Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow


Book Description

Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation. Li, Wu Langley Research Center NASA/TM-2003-212408, L-18283, NAS 1.15:212408




Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range


Book Description

We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off -design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler ow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.




Free-form Airfoil Shape Optimization Under Uncertainty Using Maximum Expected Value and Second-order Second-moment Strategies


Book Description

Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.




Aerodynamic Shape Optimization Using Control Theory


Book Description

Abstract: "Aerodynamic shape design has long persisted as a difficult scientific challenge due [sic] its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then [sic] by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions."




Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty


Book Description

This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.Li, Wu and Padula, SharonLangley Research CenterHIGH RESOLUTION; SHAPE OPTIMIZATION; VARIATIONAL PRINCIPLES; PARAMETER IDENTIFICATION; ROBUSTNESS (MATHEMATICS); COMPUTATIONAL FLUID DYNAMICS; AIRFOILS; AERODYNAMIC COEFFICIENTS; DRAG REDUCTION; FLIGHT CONDITIONS; EULER EQUATIONS OF MOTION; LIFT; MULTIDISCIPLINARY DESIGN OPTIMIZATION; ALGORITHMS




Adjoint-based Airfoil Shape Optimization in Transonic Flow


Book Description

"The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids."--Abstract, page iii.




An Optimal Control Theory Based Algorithm to Solve 2D Aerodynamic Shape Optimisation Problems for Inviscid and Viscous Flows


Book Description

With the capacity of today's computers; one can envisage the resolution of shape optimization problems in aerodynamics. Nevertheless, optimization methods require many evaluations of different aerodynamic configurations, and so are much more expensive than a single analysis. It is therefore mandatory to find methods that evaluate aerodynamic functions and their gradient at the lowest possible computational cost; as well as fast and robust optimization methods.




Low-Speed Aerodynamics


Book Description

Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This 2001 book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition has a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practising engineers.




Recent Development of Aerodynamic Design Methodologies


Book Description

Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.