Progress in Intercalation Research


Book Description

The combination of solid materials of different structural dimensionality with atomic or molecular guest species via intercalation processes represents a unique and widely variable low temperature synthesis strategy for the design of solids with particular composition, structure and physical properties. In the last decade this field has experienced a rapid development and represents now an established specific domain of solid state research and materials science. Substantial progress has been made with respect to an understanding of the complex relationship between structure, bonding, physical properties and chemical reactivity since the first volume on the subject appeared in this series in 1979 (Intercalated Layered Materials, F. Levy, ed.). The purpose of this volume is to present a survey on progress and per spectives based on the treatment of a series of major areas of activities in this field. By the very nature of its subject this monograph has an interdisciplinary character and addresses itself to chemists, physicists and materials scien tists interested in intercalation research and related aspects such as design and characterization of complex materials, low temperature synthesis, solid state reaction mechanisms, electronic/ionic conductivity, control of electronic properties of solids with different structural dimensionality and application of intercalation systems. Several chapters have been devoted to specific groups of host lattices.




Graphite Intercalation Compounds I


Book Description

The progress of materials science depends on the development of novel materials and the development of novel experimental techniques. The research on graphite intercalation compounds combines both aspects: new compounds with strikingly new and anisotropic properties have been synthesized and analyzed during the past couple of years by means of state-of-the-art experimental methods. At the same time, the preparation of the compounds already known has improved con siderably, giving increased reliability and reproducibility of the experimental results. The high quality experimental data now available have stimulated theo retical work. Moreover, the theoretical work has had a great impact on further experimental studies, with the effect of a much improved understanding of this class of materials. This volume is dedicated to a thorough description of all relevant experimen tal and theoretical aspects of the structural and dynamical properties of graphite intercalation compounds. Because of the large number of topics, a second vol ume, which is now in preparation, will follow and will treat the electronic, transport, magnetic, and optical properties. The second volume will also contain a chapter on applications of graphite intercalation compounds. There have been a number of reviews written on selected aspects of these compounds in various journals and conference proceedings during the last couple of years, but this is the first comprehensive review since the thorough overview provided by M.S. Dresselhaus and G. Dresselhaus appeared ten years ago.




Polymer Nanocomposite Research Advances


Book Description

The present book focuses on the preparation, properties, characterisation and applications of polymer nanocomposites. The various manufacturing techniques, analysis of morphology, filler dispersion, and interfacial interactions have been described are detail. In the case of polymer nanocomposites, filler dispersion, intercalation/exfoliation, orientation and filler-matrix interaction are the main parameters that determine the physical, thermal, transport, mechanical and rheological properties of the nanocomposites. In this book the ultimate properties of the nanocomposites have been correlated with the key parameters of filler dispersion and filler-matrix interaction. The use of various sophisticated instrument techniques for the characterisation of these nanocomposites are also reviewed.




Nuclear Magnetic Resonance


Book Description

Applications of Nuclear Magnetic Resonance (NMR) span a wide range of scientific disciplines, including physis, biology and medicine. Each volume in this series comprises a combination of reports offering a comprehensive coverage of the literature. With an unrivalled scope of coverage, this Specialist Periodical Report presents an invaluable source of current methods and applications for seasoned practitioners and newcomers alike.




New Trends in Intercalation Compounds for Energy Storage


Book Description

Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.




Inorganic Nanosheets and Nanosheet-Based Materials


Book Description

This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "fully nanoscopic" characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed.




Global Practices on Effective Talent Acquisition and Retention


Book Description

Studies have indicated that employers across the globe face difficulties in filling critical roles, sparking a worldwide "war for talent." This talent war, once a temporary market condition, has now solidified into the "New Normal." Leaders recognize that success in this era demands the construction of optimal teams for strategic competitive advantage amid global uncertainty and hypercompetition. As explored in detail within the pages of Global Practices on Effective Talent Acquisition and Retention, this book serves as an indispensable guide for scholars and practitioners navigating the intricacies of talent management in the current global scenario. This project aspires to create a comprehensive reference material delving into diverse aspects of current global talent realities. It aims to provide scholars and practitioners with recent empirical, practical, and theoretical research on talent acquisition and retention practices worldwide. The emphasis is on sustainable practices that drive organizational success across multiple industries. The impact of this publication will resonate in both application and the direction of future research.




Lithium Ion Batteries


Book Description

Rechargeable Batteries with high energy density are in great demand as energy sources for various purposes, e.g. handies, zero emission electric vehicles, or load leveling in electric power. Lithium batteries are the most promising to fulfill such needs because of their intrinsic discharbe voltage with relatively light weight. This volume has been conceived keeping in mind selected fundamental topics together with the characteristics of the lithium ion battery on the market. It is thus a comprehensive overview of the new challenges facing the further development of lithium ion batteries from the standpoint of both materials science and technology. It will be useful for any scientist involved in the research and development of batteries in academia and industry, and also for graduate students entering the field, since it covers important topics from both fundamental and application points of view.




Recent Advances in Graphene Research


Book Description

This book ''Recent Advances in Graphene Research'' provides a state-of-the-art report of the knowledge accumulated in graphene research. It contains 12 chapters divided into three sections. Section 1 ''Fundamentals of Graphene'' deals with quantum hall effect in graphene, electronic properties of carbon nanostructures and spectral statistics of graphene nanoflakes. In Section 2 ''Graphene Synthesis,'' the optimized synthesis procedures of graphene and its derivatives are presented. The application of graphene and its nanostructured-based materials for energy storage, conservation and other extensive applications are described in Section 3 ''Application of Graphene and its Nanostructures''. We believe that this book offers broader prospective to the readers in the recent advances in graphene research, starting from fundamental science to application.




Handbook of Battery Materials


Book Description

A one-stop resource for both researchers and development engineers, this comprehensive handbook serves as a daily reference, replacing heaps of individual papers. This second edition features twenty percent more content with new chapters on battery characterization, process technology, failure mechanisms and method development, plus updated information on classic batteries as well as entirely new results on advanced approaches. The authors, from such leading institutions as the US National Labs and from companies such as Panasonic and Sanyo, present a balanced view on battery research and large-scale applications. They follow a distinctly materials-oriented route through the entire field of battery research, thus allowing readers to quickly find the information on the particular materials system relevant to their research.