Materials in Progress


Book Description

New materials and technologies play a significant role in architecture and design. Environmentally compatible materials and production methods are demanded just as much as smoothly functioning recycling management. In addition, trends like digitalization, 3D printing and intelligent systems and materials have a decisive influence on material innovations. The book’s eight chapters span a bridge from science and industrial research to applications in architecture and design. In a compact format, it offers a well-grounded overview of the latest material innovations, including edible packaging, liquid light and intelligent natural materials. At the same time, the societal dimension of such developments is taken into consideration.




Re-Engineering the Chemical Processing Plant


Book Description

The first guide to compile current research and frontline developments in the science of process intensification (PI), Re-Engineering the Chemical Processing Plant illustrates the design, integration, and application of PI principles and structures for the development and optimization of chemical and industrial plants. This volume updates professionals on emerging PI equipment and methodologies to promote technological advances and operational efficacy in chemical, biochemical, and engineering environments and presents clear examples illustrating the implementation and application of specific process-intensifying equipment and methods in various commercial arenas.




Materials Science and Engineering


Book Description

Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




Advances in Laser Materials Processing


Book Description

Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. - A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines - Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing - Provides revised, expanded and updated coverage




Diffusion Processes in Advanced Technological Materials


Book Description

This new game book for understanding atoms at play aims to document diffusion processes and various other properties operative in advanced technological materials. Diffusion in functional organic chemicals, polymers, granular materials, complex oxides, metallic glasses, and quasi-crystals among other advanced materials is a highly interactive and synergic phenomenon. A large variety of atomic arrangements are possible. Each arrangement affects the performance of these advanced, polycrystalline multiphase materials used in photonics, MEMS, electronics, and other applications of current and developing interest. This book is written by pioneers in industry and academia for engineers, chemists, and physicists in industry and academia at the forefront of today's challenges in nanotechnology, surface science, materials science, and semiconductors.




Advances in Material Science


Book Description

Selected peer-reviewed full text papers from the International Conference on Advances in Material Science (ICAMS 2020) Selected, peer-reviewed papers from the International Conference on Advances in Material Science (ICAMS 2020), October 3, 2020, Pune, India




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.




Progress in Ceramic Science


Book Description

Progress in Ceramic Science




Advances in Materials Processing


Book Description

This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of material surface science, advanced preparation and processing technologies of materials, high purity materials, silicon purification technology, solidification science and technology, performance and structure safety of petroleum tubular goods and equipment materials, materials genomes, materials simulation, computation and design. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.