Sulfur Metabolism in Plants


Book Description

This proceedings volume contains the invited and a selection of the contributed papers of the 8th International Workshop on Sulfur Metabolism in Higher Plants, which was held at Department of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Victoria 3363, Australia from November 22-27, 2010. Content of the volume shows that the understanding of sulfur metabolism in plants and the interaction of the environment are rapidly progressing. This volume covers various aspects of the regulation of sulfate uptake and assimilation in plants, from a cellular to a whole plant level, and additionally emphasizes interactions with other minerals. Moreover the significance of sulfur metabolism in biotic and abiotic stress responses, in food security and quality, and in relation to interactions with global change factors is discussed in detail.




Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects


Book Description

This proceedings volume contains a selection of invited and contributed papers of the 10th International Workshop on Sulfur Metabolism in Plants, which was held in Goslar, Germany September 1-4, 2015. The focus of this workshop was on the fundamental, environmental and agricultural aspects of sulfur in plants, and presents an overview of the progress in the research developments in this field in the 28 years since the first of these workshops. The volume covers various aspects of the regulation of the uptake and assimilation of sulfate in plants from a molecular to a whole plant level with an emphasis on the significance of sulfur metabolism in plant responses to stress and in food security.




Frontiers of Sulfur Metabolism in Plant Growth, Development, and Stress Response


Book Description

Growing plants have a constitutive demand for sulfur to synthesize proteins, sulfolipids and other essential sulfur containing molecules for growth and development. The uptake and subsequent distribution of sulfate is regulated in response to demand and environmental cues. The importance of sulfate for plant growth and vigor and hence crop yield and nutritional quality for human and animal diets has been clearly recognized. The acquisition of sulfur by plants, however, has become an increasingly important concern for the agriculture due to the decreasing S-emissions from industrial sources and the consequent limitation of inputs from atmospheric deposition. Molecular characterization involving transcriptomics, proteomics and metabolomics in Arabidopsis thaliana as well as in major crops revealed that sulfate uptake, distribution and assimilation are finely regulated depending on sulfur status and demand, and that these regulatory networks are integrated with cell cycle, photosynthesis, carbohydrate metabolism, hormonal signaling, uptake and assimilation of other nutrients, etc., to enable plant growth, development, and reproduction even under different biotic and abiotic stresses. This knowledge can be used to underpin approaches to enhance plant growth and nutritional quality of major food crops around the world. Although considerable progress has been made regarding the central role of sulfur metabolism in plant growth, development and stress response, several frontiers need to be explored to reveal the mechanisms of the cross-talk between sulfur metabolism and these processes. In this research topic the knowledge on plant sulfur metabolism is reviewed and updated. Focus is put not only on molecular mechanisms of control of sulfur metabolism but also on its integration with other vital metabolic events. The topic covers 4 major areas of sulfur research: sulfate uptake, assimilation and metabolism, regulation, and role in stress response. We hope that the topic will promote interaction between researchers with different expertise and thus contribute to a more integrative approach to study sulfur metabolism in plants.




Sulfur Metabolism in Phototrophic Organisms


Book Description

Sulfur is one of the most versatile elements in life. This book provides, for the first time, in-depth and integrated coverage of the functions of sulfur in phototrophic organisms including bacteria, plants and algae. It bridges gaps between biochemistry and cellular biology of sulfur in these organisms, and of biology and environments dominated by them. The book therefore provides a comprehensive overview of plant sulfur relations from genome to environment.




Sulfur in Plants


Book Description

This book presents the latest findings on how plants respond physiologically to sulfur in their environment. It combines an ecosystems approach with new insights at the molecular and biochemical level. Key areas are explored to assess the functions and implications of this essential plant nutrient in a range of natural, semi-natural and anthropogenic environments. The result is an important new reference on the relationships between plants and sulfur.




Sulfur Metabolism in Plant Growth: Mechanisms and Applications


Book Description

Sulfur is a nutrient essential for plant growth. Sulfates are the primary source of sulfur for plants, which they take up from the rhizosphere. Gaseous sulfur dioxide is also absorbed by plants through the stomata and is converted into sulfite. All the inorganic sulfur absorbed by plants is assimilated by them by converting it into cysteine. This is again processed and changed into methionine. The secondary products containing sulfur have a characteristic smell and act as a defense mechanism for plants against herbivores, insects and other pathogens. These compounds also act as signalling molecules for fundamental cellular functions. From theories to research to practical applications, case studies related to all contemporary topics of relevance to this field have been included in this book. Also included herein is a detailed explanation of the various mechanisms and applications of sulfur metabolism in plant growth. This book is a vital tool for all researching or studying sulfur metabolism in plants as it gives incredible insights into emerging trends and concepts.







Sulfur Assimilation and Abiotic Stress in Plants


Book Description

The assimilation of sulfur in higher plants and its reduction in metabolically important sulfur compounds are crucial factors determining plant growth and vigor and resistance to stresses. The present book discusses the aspects of sustainable crop production with sulfur, the importance of sulfur metabolites and sulfur metabolizing enzymes in abiotic stress management in plants. The book provides the most up-to-date reference on sulfur assimilation in plants.




Sulphur in Plants


Book Description

Sulphur (S) plays a pivotal role in various plant growth and development processes being a constituent of sulphur-containing amino acids, cysteine and methionine, and other metabolites viz., glutathione and phytochelatins, co-factor of enzymes which contribute to stress repair and amelioration of heavy metal toxicity. Besides, a number of S-containing components are biologically active and, thus, a source for use as medicinal value. The basic global issue before the agricultural scientist and world community is to evolve cultivars and develop methodologies for efficient use of inputs to enhance agricultural productivity. This is particularly true of the developing countries which are going to see maximum rise in population with changing food demands and declining availability of land. Amongst the inputs, nutrients play a crucial role. The major requirement is for N, P and K followed by several micro-nutrients. In this context reports of world-wide S deficiency in the agricultural systems are relevant. The reasons are many. Broadly speaking reduction inS emission, use of S-free N, P and K fertilizers and higher biomass production contributed the maximum. Despite the need for sulphur as an essential plant nutrient and the substantial returns expected from its use, very little attention has been given to fill the gap between supply and demand of S.