Progress in Turbulence VIII


Book Description

This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I Theory II Wall-bounded flows III Simulations and modelling IV Experiments V Miscellaneous topics VI Wind energy.




Ten Chapters in Turbulence


Book Description

Leading experts summarize our current understanding of the fundamental nature of turbulence, covering a wide range of topics.







Progress in Applied Mathematical Modeling


Book Description

This book presents new research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. It includes heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimisation; finite volume, finite element, and boundary element procedures; decision sciences in an industrial and manufacturing context; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.




Research in Progress


Book Description




Research in Progress


Book Description

Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).







Progress in Optics


Book Description

This volume contains six review articles dealing with topics of current research interest in optics and in related fields. The first article deals with the so-called embedding method, which has found useful applications in the study of wave propagation in random media. The second article presents a review of an interesting class of non-linear optical phenomena which have their origin in the dependence of the complex dielectric constant of some media on the light intensity. These phenomena which include self-focusing, self-trapping and self-modulation have found many applications, for example in fibre optics devices, signal processing and computer technology. The next article is concerned with gap solitons which are electromagnetic field structures which can exist in nonlinear media that have periodic variation in their linear optical properties, with periodicities of the order of the wavelength of light. Both qualitative and quantitative descriptions of gap solitons are presented and some experimental schemes for their detection in the laboratory are discussed. The fourth article describes methods for the determination of optical phase from phase-modulated images. These methods have found applications in plasma diagnostics, in connection with flow characterisation and in the design of new optical instruments. The final article reviews developments relating to imaging, through turbulence in the atmosphere. It looks at the state-of-the-art of our understanding of this subject and discusses the most important methods that are presently employed to compensate for image distortion caused by atmospheric turbulence.




Research Progress and Plans


Book Description




Progress in Hybrid RANS-LES Modelling


Book Description

This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.