Proof Complexity


Book Description

Offers a self-contained work presenting basic ideas, classical results, current state of the art and possible future directions in proof complexity.




Logical Foundations of Proof Complexity


Book Description

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.




Computational Complexity


Book Description

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.




Bounded Arithmetic, Propositional Logic and Complexity Theory


Book Description

Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.




Proof Complexity and Feasible Arithmetics


Book Description

The 16 papers reflect some of the breakthroughs over the past dozen years in understanding whether or not logical inferences can be made in certain situations and what resources are necessary to make such inferences, questions that play a large role in computer science and artificial intelligence. They discuss such aspects as lower bounds in proof complexity, witnessing theorems and proof systems for feasible arithmetic, algebraic and combinatorial proof systems, and the relationship between proof complexity and Boolean circuit complexity. No index. Member prices are $47 for institutions and $35 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR.




Proof Theory and Logical Complexity


Book Description

"This long awaited book ... fills essential gaps in monographic literature on proof theory and prepares readers for volume 2 (to be published soon) containing an exposition of the author's new approach to proof theory for higher order logic. Even in traditional topics, like Gödel's completeness and incompleteness theorems, and cut elemination, accents are different compared to books by Kleene, Schütte, or Takeuti, which are strongly influenced by Hilbert's aim: to make mathematical theories (number theory, analysis etc.) more reliable by transformations of formalized proofs. The author is much closer to the approach of G. Kreisel (to whom this book is dedicated): Hilbert's program needs drastic rethinking and one of the main tasks is in finding mathematical applications of the results obtained in proof theory. Possibly, it is not a pure chance that the system of second order functionals developed by the author in his normalization proof for second order logic (was rediscovered and) became a tool in computer science. The book under review presents not only this material, but also other results by the author which became a part of modern proof theory including analysis of cut-free provability in terms of 3-valued logic. The material which was not previously covered (at least in such detail) in proof-theoretic monographs includes strong normalizability proofs (after Tait and Gandy), applications of reflection principles, recursive ordinals, operations on local correct (but not necessarily well-founded) omega-derivations, no-counterexample interpretation, using proof theory to extract combinatory estimates with a detailed treatment of van der Waerden's theorem. This is a difficult, but rewarding postgraduate-level textbook. The author does not avoid philosophical questions, and such discussion supported by theorems is certainly fruitful, although the reviewer would not agree with all author's conclusions"-- description of volume 1.




Logical Foundations of Mathematics and Computational Complexity


Book Description

The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.




Arithmetic, Proof Theory, and Computational Complexity


Book Description

This book principally concerns the rapidly growing area of "Logical Complexity Theory", the study of bounded arithmetic, propositional proof systems, length of proof, etc and relations to computational complexity theory. Additional features of the book include (1) the transcription and translation of a recently discovered 1956 letter from K Godel to J von Neumann, asking about a polynomial time algorithm for the proof in k-symbols of predicate calculus formulas (equivalent to the P-NP question), (2) an OPEN PROBLEM LIST consisting of 7 fundamental and 39 technical questions contributed by many researchers, together with a bibliography of relevant references.




Principia Mathematica


Book Description




Computational Complexity


Book Description

This book offers a comprehensive perspective to modern topics in complexity theory, which is a central field of the theoretical foundations of computer science. It addresses the looming question of what can be achieved within a limited amount of time with or without other limited natural computational resources. Can be used as an introduction for advanced undergraduate and graduate students as either a textbook or for self-study, or to experts, since it provides expositions of the various sub-areas of complexity theory such as hardness amplification, pseudorandomness and probabilistic proof systems.