Magnesium Technology 2020


Book Description

The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2020 covers a broad spectrum of current topics, including alloys and their properties; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; and structural applications. In addition, there is coverage of new and emerging applications.







Magnesium, Magnesium Alloys, and Magnesium Composites


Book Description

A look at the current and future uses of magnesium-based products and their role in the world's environmental and technological revolution The lightest of all structural metals, having one-fourth the density of steel and two-thirds that of aluminum, magnesium has already been adopted as an alternative construction material in applications as far ranging as automotive and sports equipment, electronics, and space technology. In a world concerned with minimizing the environmental impact of products, the choice of light-weight, energy-saving, and high-performance materials, like magnesium, would seem a small, significant step towards improving life on this planet. Magnesium, Magnesium Alloys, and Magnesium Composites introduces the science and current applications of this important metal, shedding light on the magnesium-based composites developed over the last fifteen years. Chapters include in-depth discussion of: The characteristics of pure magnesium—including atomic properties and crystal structure as well as physical, electrical, and mechanical properties Magnesium alloys—and the effects of the alloying elements, such as aluminum, lithium, copper, nickel, and silicon The properties of magnesium-based composites—and the effects of different types (metallic, ceramic, interconnected, and intermetallic) of reinforcements of varying length (from micron scale to nanometric length) Corrosion aspects of magnesium-based materials Magnesium-based products in medicine, sports equipment, and the automotive, aerospace, and electronics industries Bringing together, for the first time, the science, properties, and technologies relating to the current and future uses of magnesium, this important reference also offers readers a glimpse of a not-too-distant world in which environmental safety and sound engineering are a reality.













Aluminum-Lithium Alloys


Book Description

Because lithium is the least dense elemental metal, materials scientists and engineers have been working for decades to develop a commercially viable aluminum-lithium (Al-Li) alloy that would be even lighter and stiffer than other aluminum alloys. The first two generations of Al-Li alloys tended to suffer from several problems, including poor ductility and fracture toughness; unreliable properties, fatigue and fracture resistance; and unreliable corrosion resistance. Now, new third generation Al-Li alloys with significantly reduced lithium content and other improvements are promising a revival for Al-Li applications in modern aircraft and aerospace vehicles. Over the last few years, these newer Al-Li alloys have attracted increasing global interest for widespread applications in the aerospace industry largely because of soaring fuel costs and the development of a new generation of civil and military aircraft. This contributed book, featuring many of the top researchers in the field, is the first up-to-date international reference for Al-Li material research, alloy development, structural design and aerospace systems engineering. - Provides a complete treatment of the new generation of low-density AL-Li alloys, including microstructure, mechanical behavoir, processing and applications - Covers the history of earlier generation AL-Li alloys, their basic problems, why they were never widely used, and why the new third generation Al-Li alloys could eventually replace not only traditional aluminum alloys but more expensive composite materials - Contains two full chapters devoted to applications in the aircraft and aerospace fields, where the lighter, stronger Al-Li alloys mean better performing, more fuel-efficient aircraft




Magnesium-lithium Alloys


Book Description

A brief review is presented of progress in the development of Mg-Li-base alloys. By virtue of the Li, which has a specific gravity of 0.53, they have lower densities than any commercial Mg alloy. Li markedly improves the ductility and workability of magnesium. Since they have approximately the same modulus of elasticity as Mg alloys, about 6.5 million psi, the alloys have a high ratio of elastic modulus to weight, making possible rigid, light structures. No Mg-Li alloys are in commercial production. (Author).







NASA Special Publications


Book Description