Low Temperature Magneto-photoluminescence Characterization of High Purity Gallium Arsenide and Indium Phosphide


Book Description

Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique remains inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system is installed along with a tunable dye laser, which provides resonant excitation. Donors in high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions in a high magnetic field and at liquid helium temperature. This technique is successfully used to identify donors in n-type GaAs as well as in p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (311)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) is investigated using photoluminescence. Si acceptors in MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor in high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.













Fundamentals of Semiconductors


Book Description

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.




Optical Characterization and Modeling of Compositionally Matched Indium Arsenide-Antimonide Bulk and Multiple Quantum Well Semiconductors


Book Description

Indium arsenide-antimonide (InAsSb) semiconductors have been determined to emit in the 3-5 micrometer range, the window of interest for countermeasures against infrared electro-optical threats. This experiment set out to cross the bulk to quantum well characterization barrier by optically characterizing two sets of compositionally matched type I quantum well and bulk well material samples. Absorption measurements determined the band gap energy of the bulk samples and the first allowed subband transition for the quantum wells. By collecting absorption spectra at different temperatures, the trend of the energy transitions was described by fitting a Varshni equation to them. The expected result of the quantum well always having slightly higher energy than its bulk counterpart was observed. An etalon effect also was observed in the quantum wells, caused by the cladding layers in those samples. Photoluminescence spectra also were collected to characterize the change in electron temperature (Te) as the excitation power was varied. As expected, electron temperature increased with increasing power and increasing temperature. The start of the longitudinal optical phonon-dominated cooling range due to excitation intensity also was determined for the samples from 1/Te. It was found that the quantum well required higher excitation intensities to achieve this effect. Lastly, the energy transitions found for the quantum well samples were compared to those found by a finite element method model. The predicted energies all had a constant value above what was found experimentally, indicating the program had a translation error within it. (10 tables, 47 figures, 18 refs.)




Physics Briefs


Book Description