Propulsion and Power


Book Description

The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.




Nuclear Space Power and Propulsion Systems


Book Description

Nuclear propulsion : an introduction / Claudio Bruno -- Nuclear-thermal-rocket propulsion systems / Timothy J. Lawrence -- Application of ion thrusters to high-thrust, high-specific-impulse nuclear electric missions / D.G. Fearn -- High-power and high-thrust-density electric propulsion for in-space transportation / Monika Auweter-Kurtz and Helmut Kurtz -- Review of reactor configurations for space nuclear electric propulsion and surface power considerations / Roger X. Lenard -- Nuclear safety : legal aspects and policy recommendations / Roger X. Lenard -- Radioactivity, doses, and risks in nuclear propulsion / Alessio Del Rossi and Claudio Bruno -- The Chernobyl accident : a detailed account / Alessio del Rossi and Claudio Bruno.




Future Propulsion Systems and Energy Sources in Sustainable Aviation


Book Description

A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.




Shipboard Propulsion, Power Electronics, and Ocean Energy


Book Description

Shipboard Propulsion, Power Electronics, and Ocean Energy fills the need for a comprehensive book that covers modern shipboard propulsion and the power electronics and ocean energy technologies that drive it. With a breadth and depth not found in other books, it examines the power electronics systems for ship propulsion and for extracting ocean energy, which are mirror images of each other. Comprised of sixteen chapters, the book is divided into four parts: Power Electronics and Motor Drives explains basic power electronics converters and variable-frequency drives, cooling methods, and quality of power Electric Propulsion Technologies focuses on the electric propulsion of ships using recently developed permanent magnet and superconducting motors, as well as hybrid propulsion using fuel cell, photovoltaic, and wind power Renewable Ocean Energy Technologies explores renewable ocean energy from waves, marine currents, and offshore wind farms System Integration Aspects discusses two aspects—energy storage and system reliability—that are essential for any large-scale power system This timely book evolved from the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching at the U.S. Merchant Marine Academy. As a textbook, it is ideal for an elective course at marine and naval academies with engineering programs. It is also a valuable reference for commercial and military shipbuilders, port operators, renewable ocean energy developers, classification societies, machinery and equipment manufacturers, researchers, and others interested in modern shipboard power and propulsion systems. The information provided herein does not necessarily represent the view of the U.S. Merchant Marine Academy or the U.S. Department of Transportation. This book is a companion to Shipboard Electrical Power Systems (CRC Press, 2011), by the same author.







Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Propulsion Systems for Hybrid Vehicles


Book Description

Offering in-depth coverage of hybrid propulsion topics, energy storage systems and modelling, and supporting electrical systems, this book will be an invaluable resource for practising engineers and managers involved in all aspects of hybrid vehicle development, modelling, simulation and testing.







The Power for Flight


Book Description

The NACA and aircraft propulsion, 1915-1958 -- NASA gets to work, 1958-1975 -- The shift toward commercial aviation, 1966-1975 -- The quest for propulsive efficiency, 1976-1989 -- Propulsion control enters the computer era, 1976-1998 -- Transiting to a new century, 1990-2008 -- Toward the future




Ship Resistance and Propulsion


Book Description

Written by experts in the ship design field, this book provides a comprehensive approach to evaluating ship resistance and propulsion.