Inflammation, 4 Volume Set


Book Description

Dieses Fachbuch erläutert die molekularen Grundlagen von Entzündungen, spannt den Bogen zu Infektionskrankheiten und den Zusammenhang zwischen Entzündungen und chronischen Erkrankungen, behandelt abschließend den Heilungsprozess und zeigt Therapiemöglichkeiten.




TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades


Book Description

Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st




Proteases and Their Receptors in Inflammation


Book Description

Proteases are everywhere from prokaryotes to eukaryotes, from virus to bacteria and in all human tissues, playing a role in many biological functions. Among these functions, the inflammatory reaction is of particular interest. In inflamed tissues, proteases can have a microbial and/or host origin and are involved not only in tissue remodeling, but also in specific signaling to resident or inflammatory cells, thereby contributing to the innate immune response. This volume presents all advances in our knowledge of the role proteases and their inhibitors play in various diseases associated with inflammatory response. Mechanisms involved in protease signaling to cells are presented, and the different types of proteases that are present at inflammatory sites and their effects on the course of inflammation are discussed. Finally, the evidence for considering proteases and their receptors as potential molecular targets for therapeutic interventions in the treatment of inflammatory diseases is discussed in the context of specific organ inflammatory pathologies (the lung, gastrointestinal tract, skin, joints, etc.).




Mast Cell Biology


Book Description

The editors of Mast Cell Biology, Drs. Gilfillan and Metcalfe, have enlisted an outstanding group of investigators to discuss the emerging concepts in mast cell biology with respect to development of these cells, their homeostasis, their activation, as well as their roles in maintaining health on the one hand and on the other, their participation in disease.




Itch


Book Description

Advances in itch research have elucidated differences between itch and pain but have also blurred the distinction between them. There is a long debate about how somatic sensations including touch, pain, itch, and temperature sensitivity are encoded by the nervous system. Research suggests that each sensory modality is processed along a fixed, direct-line communication system from the skin to the brain. Itch: Mechanisms and Treatment presents a timely update on all aspects of itch research and the clinical treatment of itch that accompanies many dermatological conditions including psoriasis, neuropathic itch, cutaneous t-cells lymphomas, and systemic diseases such as kidney and liver disease and cancer. Composed of contributions from distinguished researchers around the world, the book explores topics such as: Neuropathic itch Peripheral neuronal mechanism of itch The role of PAR-2 in neuroimmune communication and itch Mrgprs as itch receptors The role of interleukin-31 and oncostatin M in itch and neuroimmune communication Spinal coding of itch and pain Spinal microcircuits and the regulation of itch Examining new findings on cellular and molecular mechanisms, the book is a compendium of the most current research on itch, its prevalence in society, and the problems associated with treatment.




Proteolytic Signaling in Health and Disease


Book Description

In recent years, powered by evolving technologies and experimental design, studies have better illuminated the regulating role of proteolytic enzymes across human development and pathologies. Proteolytic Signaling in Health and Disease provides an in-depth discussion of fundamental physiological and developmental processes regulated by proteases, from protein turnover and autophagy to antigen processing and presentation and major histocompatibility complex (MHC) molecules. Moving on from basic biology, international chapter authors examine a range of pathological conditions associated with proteolysis, including inflammation, wound healing, and cancer. Later chapters discuss the newly discovered network of connected events among proteases (and their inhibitors), the so-called 'protease web', and how best to study it. This book also empowers new research with up-to-date analytical methods and step-by-step protocols for studying proteolytic signaling events. - Examines biological events triggered by proteolytic enzyme activity across human development and pathologies - Discusses the role of proteolytic signaling in inflammation, wound healing, and cancer, among other disease types - Features methods and protocols supporting further study of proteolytic signaling events - Includes chapter contributions from international leaders in the field




Encyclopedia of Inflammatory Diseases


Book Description

Inflammation has become one of the most exciting and rewarding areas of medical research. Recent years have seen a revolution in our understanding of how blood and tissue cells interact and of the intracellular mechanisms controlling their activation. This has revealed the underlying inflammatory pathology of many diseases and provided multiple new targets for anti-inflammatory and immunomodulatory therapy. The Encyclopedia of Inflammatory Diseases will cover the following areas: Inflammatory Processes and Cells Inflammatory Diseases Mediators of Inflammation Pharmacology of Inflammation Since inflammatory diseases and their therapy cover a broad range of scientific and medical fields, the encyclopedia will be co-edited by four international experts, a clinician and three researchers from the disciplines of immunology, biochemistry, and pharmacology, in this way providing students, basic and clinical scientists and practitioners in academia, hospitals and industry with valuable interlinked information. This living project will serve as a reliable and comprehensive data pool for everybody working in inflammation research. Owing to its dynamic nature, it will grow with time and future editions, becoming an indispensible source of information for academia, clinical practitioners and industry.




Inflammation and the Microcirculation


Book Description

The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References




Pharmacology of Itch


Book Description

Basic research on the pharmacology of itch has exploded in the wake of two very influential papers that were published in Nature (2007) and Science (2009). Long overlooked as a milder form of pain, itching has rapidly gained a new appreciation in both research and clinical communities because of its complexity and its negative effects on the quality of life of the distressed patients. Like pain, not all itches are the same. Unlike pain, there are no standard drugs equivalent to aspirin and morphine. Epidemiological studies emphasize the high incidence and economic costs of itch (pruritus). It is the most prevalent symptom of a wide variety of allergic and inflammatory skin conditions (e.g., psoriasis, atopic dermatitis), is associated with several systemic diseases (e.g., chronic kidney and liver disease), and occurs in patients undergoing hemodialysis, spinal administration of opioids, and in those suffering from AIDS. The reader will learn about the multiple pathways for itch and their interactions with pain. The relationship between these closely related, yet distinct sensory phenomena, will be emphasized. Both itch and pain use several common molecules to send signals to the brain. Thus, drugs that have been, and are being, developed as analgesics may also attenuate intractable itch. This has been an exciting and very necessary turn of events since traditional H-1 receptor antagonists are ineffective in blocking the pruritus associated with kidney failure and cholestasis. The clinical chapters will provide insights into contemporary treatment regimens for pruritus in different human scenarios.




Proteases in Human Diseases


Book Description

This book bridges the gap between fundamental research and biomedical and pharmacological applications on proteases. It represents a comprehensive overview of the multifaceted field of proteases in cellular environment and highlights the recently elucidated functions of complex proteolytic systems in different diseases. Several established investigators have elucidated the crucial role of proteases in biological processes, including how proteolytic function and regulation can be combined to develop new strategies of therapeutic interventions. Proteases form one of the largest and most diverse families of enzymes known. It is now clear that proteases are involved in every aspect of life functions of an organism. Under physiological conditions, proteases are regulated by their endogenous inhibitors; however, when the activity of proteases is not regulated appropriately, disease processes can result in. So, there is absolute need for a stringent control of proteolytic activities in cells and tissues. Dysregulation of proteases may cause derangement of cellular signalling network resulting in different pathophysiological conditions such as vascular remodelling, atherosclerotic plaque progression, ulcer and rheumatoid arthritis, Alzheimer disease, cancer metastasis, tumor progression and inflammation. Additionally, many infective microorganisms require proteases for replication or use proteases as virulence factors, which have facilitated the development of protease-targeted therapies for a variety of parasitic diseases.