Protein-based Engineered Nanostructures


Book Description

This book is devoted to the engineering of protein-based nanostructures and nanomaterials. One key challenge in nanobiotechnology is to be able to exploit the natural repertoire of protein structures and functions to build materials with defined properties at the nanoscale using “bottom-up” strategies. This book addresses in an integrated manner all the critical aspects that need to be understood and considered to design the next generation of nano-bio assemblies. The book covers first the fundamentals of the design and features of the protein building blocks and their self-assembly illustrating some of the most relevant examples of nanostructural design. Finally, the book contains a section dedicated to demonstrated applications of these novel bioinspired nanostructures in different fields from hybrid nanomaterials to regenerative medicine. This book provides a comprehensive updated review of this rapidly evolving field.




Nanostructures for the Engineering of Cells, Tissues and Organs


Book Description

Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. - Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules - Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration - Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine




Nanoparticle (NP)-Based Delivery Vehicles


Book Description

Gene therapy as a potential method for treatment of genetic disorders and other malignancies as well as treatment of many cancers has attracted a great amount of attention in recent years. Current research focuses on stable and smart drug/gene delivery systems, including controlled release. Smart nanostructures have been considered as a promising approach when applied to drug and gene delivery systems, and could solve the problems related to the inefficient transfer of medication to the affected cells.




Protein Self-Assembly


Book Description

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.




Engineered Nanostructures for Therapeutics and Biomedical Applications


Book Description

Engineered Nanostructures for Therapeutics and Biomedical Applications offers a single reference for a diverse biomedical readership to learn about the application of nanotechnology in biomedicine and biomedical engineering, from past developments to current research and future prospects. This book sets out a broad selection of biomedical and therapeutic applications for nanostructures, including bioimaging, nanorobotics, orthopedics, and tissue engineering, offering a useful, multidisciplinary approach. Each chapter discusses challenges faced in each discipline, including limiting factors, biocompatibility, and toxicity, thus enabling the reader to make informed decisions in their research.This book is a comprehensive, broad overview of the role and significance of nanomaterials and their composites that also includes discussions of key aspects in the field of biomedicine. It will be of significant interest to academics and researchers in materials science and engineering, biomedicine and biomedical engineering, chemical engineering, pharmaceutics, bioimaging, and nanorobotics. - Provides a broad overview of the many applications of nanomaterials and nanotechnology in biomedicine and engineering - Offers a multidisciplinary approach that will appeal to a diverse readership, including those in biomedical engineering, materials science, biomedicine, and pharmaceutics - Includes challenges faced and limiting factors for each application, allowing readers to make an informed decision when using nanomaterials in their research




Advances in Nanomaterials for Drug Delivery


Book Description

Nanomedicine is a developing field, which includes different disciplines such as material science, chemistry, engineering and medicine devoted to the design, synthesis and construction of high-tech nanostructures. The ability of these structures to have their chemical and physical properties tuned by structural modification, has allowed their use in drug delivery systems, gene therapy delivery, and various types of theranostic approaches. Colloidal noble metal nanoparticles and other nanostructures have many therapeutic and diagnostic applications. The concept of drug targeting as a magic bullet has led to much research in chemical modification to design and optimize the binding to targeted receptors. It is important to understand the precise relationship between the drug and the carrier and its ability to target specific tissues, and pathogens to make an efficient drug delivery system. This book covers advances based on different drug delivery systems: polymeric and hyper branched nanomaterials, carbon-based nanomaterials, nature-inspired nanomaterials, and pathogen-based carriers.




Healthy Past 100


Book Description

Healthy Past 100 was written explicitly for those longing to be extraordinarily healthy—even past their 100th birthday. This breakthrough book is based on thousands of cutting-edge science articles identifying the causes of optimal health vs sickness and disease. Healthy Past 100 puts a wealth of cutting-edge, science-based healthcare information at your fingertips, empowering you to make the healthiest choices for you and your family. Healthy Past 100 is several books in one, and it also contains a mouthwatering keto cookbook that's exclusively based on the most nourishing ingredients you can consume. This life-changing book is based on the Short List, i.e., a distillation of the core factors involved in being healthy past 100. The Short List includes: The Metabolic Masterplan Diet: the Metabolic Masterplan Diet may be the world's most advanced ketogenic diet. Nothing improves your health as much as following this research-based, anti-inflammatory, gut-healing ketogenic diet. Nutrition and Supplements: providing your cells with all the nutrients they require to function optimally is key to a long, healthy life. Healthy Past 100 shows you exactly which nutrients you need and which ones to supplement with. Metabolism: carbohydrates and sugar damage your metabolism (the process of creating energy in your cells), causing serious health issues. Healthy Past 100 teaches you to heal and optimize your metabolism, and which tests to rely on to know—not guess—that your metabolism is as healthy as can be. Chronic Inflammation: this widespread health issue underlies all diseases, and must be healed to experience optimal health. Healthy Past 100 rids you of chronic inflammation—now and forever—paving the way to lasting health. Gut Health: most humans deal with significant gut issues. Fortunately, Healthy Past 100's innovative gut healing method leads to lifelong optimized gut health. Psychology: psychology is how you think, feel, act, behave and respond to life's circumstances. Healthy Past 100 provides the tools to heal and optimize your psychology, which is foundational to a healthy, fulfilling life. Thyroid Physiology: inefficient thyroid physiology impairs your body and mind, zaps your energy and causes many diseases. Healthy Past 100 explains how thyroid physiology works, how to heal it, and the tests determining if it's in tip-top shape. Exercise: crucial to your health and well-being, exercise must be performed regularly. Healthy Past 100 teaches you which exercises help you become healthy past 100. Detoxification: humans are routinely exposed to dangerous heavy metal toxins. Healthy Past 100 shows you how to rid these harmful metals from your body and minimize your exposure to them in the future. Oxidative Stress: oxidative stress is a primary cause of aging, sickness, disease and death. It has many causes, including carbohydrates, sugar, poor nutrition and impaired gut health. Healthy Past 100 helps you optimize oxidative stress where it matters most: within the mitochondria in your cells. Spiritual/Religious Life: extraordinary health stems from optimal physical, psychological and spiritual well-being. It's just as important to focus on your spiritual fitness as it is to heal your physical body, and Healthy Past 100 helps you do both. This pioneering book has been written to help you experience extraordinary health past your 100th birthday. If you're ready to be healthy past 100, this is the book you've been waiting for!




Protein-Nanoparticle Interactions


Book Description

In recent years, the fabrication of nanomaterials and exploration of their properties have attracted the attention of various scientific disciplines such as biology, physics, chemistry, and engineering. Although nanoparticulate systems are of significant interest in various scientific and technological areas, there is little known about the safety of these nanoscale objects. It has now been established that the surfaces of nanoparticles are immediately covered by biomolecules (e.g. proteins, ions, and enzymes) upon their entrance into a biological medium. This interaction with the biological medium modulates the surface of the nanoparticles, conferring a “biological identity” to their surfaces (referred to as a “corona”), which determines the subsequent cellular/tissue responses. The new interface between the nanoparticles and the biological medium/proteins, called “bio-nano interface,” has been very rarely studied in detail to date, though the interest in this topic is rapidly growing. In this book, the importance of the physiochemical characteristics of nanoparticles for the properties of the protein corona is discussed in detail, followed by comprehensive descriptions of the methods for assessing the protein-nanoparticle interactions. The advantages and limitations of available corona evaluation methods (e.g. spectroscopy methods, mass spectrometry, nuclear magnetic resonance, electron microscopy, X-ray crystallography, and differential centrifugal sedimentation) are examined in detail, followed by a discussion of the possibilities for enhancing the current methods and a call for new techniques. Moreover, the advantages and disadvantages of protein-nanoparticle interaction phenomena are explored and discussed, with a focus on the biological impacts.




Handbook of Immunological Properties of Engineered Nanomaterials


Book Description

The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.




Bio- and Bioinspired Nanomaterials


Book Description

A comprehensive overview of nanomaterials that are inspired by or targeted at biology, including some of the latest breakthrough research. Throughout, valuable contributions from top-level scientists illustrate how bionanomaterials could lead to novel devices or structures with unique properties. The first and second part cover the most relevant synthetic and bioinspired nanomaterials, including surfaces with extreme wettability properties, functional materials with improved adhesion or structural and functional systems based on the complex and hierarchical organization of natural composites. These lessons from nature are explored in the last section where bioinspired materials are proposed for biomedical applications, showing their potential for future applications in drug delivery, theragnosis, and regenerative medicine. A navigational guide aimed at advanced and specialist readers, while equally relevant for readers in research, academia or private companies focused on high added-value contributions. Young researchers will also find this an indispensable guide in choosing or continuing to work in this stimulating area, which involves a wide range of disciplines, including chemistry, physics, materials science and engineering, biology, and medicine.