Pt Symmetry: In Quantum And Classical Physics


Book Description

'The text is easy to read because the matter is clearly explained. Symmetries are a central component of physical laws, and the PT-symmetry proves to be very interesting and fruitful. The discussion of the matter is up-to-date and self-contained. The book is recommended to students of higher courses, PhD and researchers. It is also a basic read to those who wish to have an insight into this field.'Contemporary PhysicsOriginated by the author in 1998, the field of PT (parity-time) symmetry has become an extremely active and exciting area of research. PT-symmetric quantum and classical systems have theoretical, experimental, and commercial applications, and have been the subject of many journal articles, PhD theses, conferences, and symposia. Carl Bender's work has influenced major advances in physics and generations of students.This book is an accessible entry point to PT symmetry, ideal for students and scientists looking to begin their own research projects in this field.







Topics in PT-symmetric Quantum Mechanics and Classical Systems


Book Description

Space-time reflection symmetry, or PT symmetry, first proposed in quantum mechanics by Bender and Boettcher in 1998 [2], has become an active research area in fundamental physics. This dissertation contains several research problems which are more or less related to this field of study. After an introduction on complementary topics for the main projects in Chap.1, we discuss about an idea which is originated from the remarkable paper by Chandrasekar et al in Chap.2. They showed that the (second-order constant-coefficient) classical equation of motion for a damped harmonic oscillator can be derived from a Hamiltonian having one degree of freedom. We gives a simple derivation of their result and generalizes it to the case of an nth-order constant-coefficient differential equation.In Chap.3 we studied the analytical continuation of the coupling constant g of a coupled quantum theory. We get to this conclusion that one can, at least in principle, arrive at a state whose energy is lower than the ground state of the theory. The idea is to begin with the uncoupled g = 0 theory in its ground state, to analytically continue around an exceptional point (square-root singularity) in the complex-coupling-constant plane, and finally to return to the point g = 0. In the course of this analytic continuation, the uncoupled theory ends up in an unconventional state whose energy is lower than the original ground-state energy. However, it is unclear whether one can use this analytic continuation to extract energy from the conventional vacuum state; this process appears to be exothermic but one must do work to vary the coupling constant g.PT-symmetric quantum mechanics began with a study of the Hamiltonian H=p2+x2(ix)\epsilon. When epsilon >̲ 0, this portion of parameter space is known as the region of unbroken PT symmetry. The region of unbroken PT symmetry has been studied but the region of broken PT symmetry which is related to the negative epsilon has thus far been unexplored. In Chap.4 we present a detailed numerical and analytical examination of the behavior of the eigenvalues for 4




Parity-time Symmetry and Its Applications


Book Description

This book offers a comprehensive review of the state-of-the-art theoretical and experimental advances in linear and nonlinear parity-time-symmetric systems in various physical disciplines, and surveys the emerging applications of parity-time (PT) symmetry. PT symmetry originates from quantum mechanics, where if the Schrodinger operator satisfies the PT symmetry, then its spectrum can be all real. This concept was later introduced into optics, Bose-Einstein condensates, metamaterials, electric circuits, acoustics, mechanical systems and many other fields, where a judicious balancing of gain and loss constitutes a PT-symmetric system. Even though these systems are dissipative, they exhibit many signature properties of conservative systems, which make them mathematically and physically intriguing. Important PT-symmetry applications have also emerged. This book describes the latest advances of PT symmetry in a wide range of physical areas, with contributions from the leading experts. It is intended for researchers and graduate students to enter this research frontier, or use it as a reference book.




Supersymmetry In Quantum and Classical Mechanics


Book Description

Following Witten's remarkable discovery of the quantum mechanical scheme in which all the salient features of supersymmetry are embedded, SCQM (supersymmetric classical and quantum mechanics) has become a separate area of research . In recent years, progress in this field has been dramatic and the literature continues to grow. Until now, no book has offered an overview of the subject with enough detail to allow readers to become rapidly familiar with its key ideas and methods. Supersymmetry in Classical and Quantum Mechanics offers that overview and summarizes the major developments of the last 15 years. It provides both an up-to-date review of the literature and a detailed exposition of the underlying SCQM principles. For those just beginning in the field, the author presents step-by-step details of most of the computations. For more experienced readers, the treatment includes systematic analyses of more advanced topics, such as quasi- and conditional solvability and the role of supersymmetry in nonlinear systems.




Non-Hermitian Hamiltonians in Quantum Physics


Book Description

This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.




Symmetry Breaking


Book Description

The third edition of the by now classic reference on rigorous analysis of symmetry breaking in both classical and quantum field theories adds new topics of relevance, in particular the effect of dynamical Coulomb delocalization, by which boundary conditions give rise to volume effects and to energy/mass gap in the Goldstone spectrum (plasmon spectrum, Anderson superconductivity, Higgs phenomenon). The book closes with a discussion of the physical meaning of global and local gauge symmetries and their breaking, with attention to the effect of gauge group topology in QCD. From the reviews of the first edition: It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced [...] a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. J.-P. Antoine, Physicalia 28/2, 2006 Despite many accounts in popular textbooks and a widespread belief, the phenomenon is rather subtle, requires an infinite set of degrees of freedom and an advanced mathematical setting of the system under investigation. [...] The mathematically oriented graduate student will certainly benefit from this thorough, rigorous and detailed investigation. G. Roepstorff, Zentralblatt MATH, Vol. 1075, 2006 From the reviews of the second edition: This second edition of Strocchi’s Symmetry Breaking presents a complete, generalized and highly rigorous discussion of the subject, based on a formal analysis of conditions necessary for the mechanism of spontaneous symmetry breaking to occur in classical systems, as well as in quantum systems. [...] This book is specifically recommended for mathematical physicists interested in a deeper and rigorous understanding of the subject, and it should be mandatory for researchers studying the mechanism of spontaneous symmetry breaking. S. Hajjawi, Mathematical Reviews, 2008




The Force of Symmetry


Book Description

An elementary introduction to the interplay between quantum mechanics, relativity, and symmetry.




Non-Selfadjoint Operators in Quantum Physics


Book Description

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.




Physics from Symmetry


Book Description

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.