Green Chemistry and Sustainability in Pulp and Paper Industry


Book Description

This book features in-depth and thorough coverage of Minimum Impact Mill Technologies which can meet the environmental challenges of the pulp and paper industry and also discusses Mills and Fiberlines that encompass “State-of-the-Art” technology and management practices. The minimum impact mill does not mean "zero effluent", nor is it exclusive to one bleaching concept. It is a much bigger concept which means that significant progress must be made in the following areas: Water Management, Internal Chemical Management, Energy Management, Control and Discharge of Non-Process Elements and Removal of Hazardous Pollutants. At the moment, there is no bleached kraft pulp mill operating with zero effluent. With the rise in environmental awareness due to the lobbying by environmental organizations and with increased government regulation there is now a trend towards sustainability in the pulp and paper industry. Sustainable pulp and paper manufacturing requires a holistic view of the manufacturing process. During the last decade, there have been revolutionary technical developments in pulping, bleaching and chemical recovery technology. These developments have made it possible to further reduce loads in effluents and airborne emissions. Thus, there has been a strong progress towards minimum impact mills in the pulp and paper industry. The minimum-impact mill is a holistic manufacturing concept that encompasses environmental management systems, compliance with environmental laws and regulations and manufacturing technologies.




Pulp and Paper Industry


Book Description

Pulp and Paper Industry: Emerging Waste Water Treatment Technologies is the first book which comprehensively reviews this topic. Over the past decade, pulp and paper companies have continued to focus on minimizing fresh water use and effluent discharges as part of their move towards sustainable operating practices. Three stages—basic conservation, water reuse and water recycling—provide a systematic approach to water resource management. Implementing these stages requires increased financial investment and better utilization of water resources. The ultimate goal for pulp and paper companies is to have effluent-free factories with no negative environmental impact. The traditional water treatment technologies that are used in paper mills are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. This book discusses various measures being adopted by the pulp and paper industry to reduce water consumption and treatment techniques to treat wastewater to recover it for reuse. The book also examines the emerging technologies for treatment of effluents and presents examples of full-scale installations. - Provides thorough and in-depth coverage of advanced treatment technologies which will benefit the industry personnel, pulp manufacturers, researchers and advanced students - Presents new treatment strategies to improve water reuse and fulfill the legislation in force regarding wastewater discharge - Presents viable solutions for pulp and paper manufacturers in terms of wastewater treatment - Presents examples of full-scale installations to help motivate mill personnel to incorporate new technologies




Biotechnology for Pulp and Paper Processing


Book Description

The book provides the most up-to-date information available on various biotechnological processes useful in the pulp and paper industry. The first edition was published in 2011, covering a specific biotechnological process or technique, discussing the advantages, limitations, and prospects of the most important and popular processes used in the industry. Many new developments have taken place in the last five years, warranting a second edition on this topic. The new edition contains about 35% new material covering topics in Laccase application in fibreboard; biotechnology in forestry; pectinases in papermaking; stickies control with pectinase; products from hemicelluloses; value added products from biorefinery lignin; use of enzymes in mechanical pulping.




Environmentally Benign Pulping


Book Description

This book provides the most up-to-date and comprehensive information on the state-of-the-art techniques and aspects involved in environment-friendly pulping technologies. Traditional chemical and semi-chemical pulping processes are not environmentally friendly. Therefore, it has become important to look for alternative approaches to mitigate wastewater emissions in the paper industry, by making more stringent regulations to improve environmental conservation. In response to this problem, new raw materials need to be explored to replace traditional choices and also new pulping processes need to be developed based on less polluting, more easily recovered reagents. This book presents new and emerging deep eutectic solvents for lignocellulosic biomass pretreatment, and discusses the effects of deep eutectic solvents on biomass pretreatment and the production of value-added products. It also introduces biotechnological methods of pulping. Biotechnological processes help to make manufacturing processes cleaner and more efficient by reducing toxic chemical pollution and greenhouse gas emissions. Given its scope, this book is of interest to applied chemists, foresters, chemical engineers, wood scientists, along with engineers and researchers involved in the pulp and paper industry as a valuable reference.




The Greenhouse Gas Protocol


Book Description

The GHG Protocol Corporate Accounting and Reporting Standard helps companies and other organizations to identify, calculate, and report GHG emissions. It is designed to set the standard for accurate, complete, consistent, relevant and transparent accounting and reporting of GHG emissions.




Biological Odour Treatment


Book Description

Showcasing the very latest technologies for neutralising the unpleasant—and sometimes dangerous—odours from industrial and waste management processes, this Springer Brief in Environmental Sciences covers physical, chemical and biological methods. The volume includes modern biotechnological approaches now making it cost-effective to tackle malodorous chemicals at very small concentrations. The book reflects the fact that odour affects us in several ways, which range from compromising our quality of life to causing respiratory and other unpleasant conditions and from depressing property values to severe health problems caused by the toxic stimulants of odours. Innumerable industrial processes release malodourous and harmful vapours. The human sense of smell can detect some noxious chemicals, such as the sulphurous by-products of paper manufacturing, at concentrations of one part per billion. This e-book shows what has been achieved in combating offensive and harmful odours. While conventional air pollution control technologies can treat a wide variety of pollutants at higher concentrations, the chapters cover the more refined biological methods used to deal with odours and volatile organic compounds in low concentrations. These include bio scrubbers and bio trickling filters. Standing alongside its detailed discussion of the health impacts of total reduced sulphur compounds, and the composition of paper pulp industry emissions, this publication offers comprehensive and in-depth treatment of some of the most potent anti-odour technologies yet devised.