Pure Mathematics for Beginners - Solution Guide


Book Description

Pure Mathematics for Beginners - Solution GuideThis book contains complete solutions to the problems in the 16 Problem Sets in Pure Mathematics for Beginners. Note that this book references examples and theorems from Pure Mathematics for Beginners. Therefore, it is strongly suggested that you purchase a copy of that book before purchasing this one.




Understanding Pure Mathematics


Book Description

This textbook covers in one volume all topics required in the pure mathematics section of single subject A-Level Mathematics syllabuses in the UK, as well as a significant part of the work required by those studying for Further Mathematics and for A-Level




Basic Mathematics


Book Description




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




An Introduction to Mathematical Reasoning


Book Description

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.







Honors Calculus


Book Description

This is the first modern calculus book to be organized axiomatically and to survey the subject's applicability to science and engineering. A challenging exposition of calculus in the European style, it is an excellent text for a first-year university honors course or for a third-year analysis course. The calculus is built carefully from the axioms with all the standard results deduced from these axioms. The concise construction, by design, provides maximal flexibility for the instructor and allows the student to see the overall flow of the development. At the same time, the book reveals the origins of the calculus in celestial mechanics and number theory. The book introduces many topics often left to the appendixes in standard calculus textbooks and develops their connections with physics, engineering, and statistics. The author uses applications of derivatives and integrals to show how calculus is applied in these disciplines. Solutions to all exercises (even those involving proofs) are available to instructors upon request, making this book unique among texts in the field. Focuses on single variable calculus Provides a balance of precision and intuition Offers both routine and demanding exercises




Introduction to Real Analysis


Book Description

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.