Qualitative Theory of Hybrid Dynamical Systems


Book Description

The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.




Qualitative Theory of Hybrid Dynamical Systems


Book Description

The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.




An Introduction to Hybrid Dynamical Systems


Book Description

This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.




Hybrid Dynamical Systems


Book Description

A graduate-level textbook, Hybrid Dynamical Systems provides an accessible and comprehensive introduction to the theory of hybrid systems. It emphasizes results that are central to a good understanding of the importance and role of such systems. The authors have developed the materials in this book while teaching courses on hybrid systems, cyber-physical systems, and formal methods. This textbook helps students to become familiar with both the major approaches coloring the study of hybrid dynamical systems. The computer science and control systems points of view – emphasizing discrete dynamics and real time, and continuous dynamics with switching, respectively – are each covered in detail. The book shows how the behavior of a system with tightly coupled cyber- (discrete) and physical (continuous) elements can best be understood by a model simultaneously encompassing all the dynamics and their interconnections. The theory presented is of fundamental importance in a wide range of emerging fields from next-generation transportation systems to smart manufacturing.Features of the text include: extensive use of examples to illustrate the main concepts and to provide insights additional to those acquired from the main text; chapter summaries enabling students to assess their progress; end-of-chapter exercises, which test learning as a course proceeds; an instructor’s guide showing how different parts of the book can be exploited for different course requirements; and a solutions manual, freely available for download by instructors adopting the book for their teaching. Access to MATLAB and Stateflow is not required but would be beneficial, especially for exercises in which simulations are a key tool.




Stability and Control of Dynamical Systems with Applications


Book Description

It is with great pleasure that I offer my reflections on Professor Anthony N. Michel's retirement from the University of Notre Dame. I have known Tony since 1984 when he joined the University of Notre Dame's faculty as Chair of the Depart ment of Electrical Engineering. Tony has had a long and outstanding career. As a researcher, he has made im portant contributions in several areas of systems theory and control theory, espe cially stability analysis of large-scale dynamical systems. The numerous awards he received from the professional societies, particularly the Institute of Electrical and Electronics Engineers (IEEE), are a testament to his accomplishments in research. He received the IEEE Control Systems Society's Best Transactions Paper Award (1978), and the IEEE Circuits and Systems Society's Guillemin-Cauer Prize Paper Award (1984) and Myril B. Reed Outstanding Paper Award (1993), among others. In addition, he was a Fulbright Scholar (1992) and received the Alexander von Hum boldt Forschungspreis (Alexander von Humboldt Research Award for Senior U.S. Scientists) from the German government (1997). To date, he has written eight books and published over 150 archival journal papers. Tony is also an effective administrator who inspires high academic standards.




Impulsive and Hybrid Dynamical Systems


Book Description

This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.




Stability of Dynamical Systems


Book Description

The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions. Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions - Specialization of this stability theory to finite-dimensional dynamical systems - Specialization of this stability theory to infinite-dimensional dynamical systems Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems. It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences. Review of the First Edition: “The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems. [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.” - Alessandro Astolfi, IEEE Control Systems Magazine, February 2009




Qualitative Analysis of Large Scale Dynamical Systems


Book Description

This book develops a unified approach to qualitative analysis of large scale systems described by many diversified types of equations.




Qualitative Theory of Dynamical Systems


Book Description

"Illuminates the most important results of the Lyapunov and Lagrange stability theory for a general class of dynamical systems by developing topics in a metric space independantly of equations, inequalities, or inclusions. Applies the general theory to specific classes of equations. Presents new and expanded material on the stability analysis of hybrid dynamical systems and dynamical systems with discontinuous dynamics."




Stability of Dynamical Systems


Book Description

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.