Representation and Control of Infinite Dimensional Systems


Book Description

This unified, revised second edition of a two-volume set is a self-contained account of quadratic cost optimal control for a large class of infinite-dimensional systems. The original editions received outstanding reviews, yet this new edition is more concise and self-contained. New material has been added to reflect the growth in the field over the past decade. There is a unique chapter on semigroup theory of linear operators that brings together advanced concepts and techniques which are usually treated independently. The material on delay systems and structural operators has not yet appeared anywhere in book form.










Infinite-Dimensional Dynamical Systems in Mechanics and Physics


Book Description

This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.




Dynamics of Infinite Dimensional Systems


Book Description

The 1986 NATO Advanced Study Insti tute on Dynamics of Infini te Dimensional Systems was held at the Instituto Superior Tecnico. Lisbon. Portugal. In recent years. there have been several research workers who have been considering partial differential equations and functional differential equations as dynamical systems on function spaces. Such approaches have led to the formulation of more theoretical problems that need to be investigated. In the applications. the theoretical ideas have contributed significantly to a better understanding of phenomena that have been experimentally and computationally observed. The investigators of this development come wi th several different backgrounds - some from classical partial differential equations. some from classical ordinary differential equations and some interested in specific applications. Each group has special ideas and often these ideas have not been transmitted from one group to another. The purpose of this NATO Workshop was to bring together research workers from these various areas. It provided asoundboard for the impact of the ideas of each respective discipline. We believe that goal was accomplished. but time will be a better judge. We have included the list of participants at the workshop. with most of these giving a presentation. Although the proceedings do not include all of the presentations. it is a good representative sampie. We wish to express our gratitude to NATO. and.to Dr. M. di Lullo of NATO. who unfortunately did not live to see the completion of this project.




Optimal Control Theory and its Applications


Book Description

This work (in two parts), Lecture Notes in Economics and Mathe matical Systems, Volume 105 and 106, constitutes the Proceedings of the Fourteenth Biennual Seminar of the Canadian Mathematical Congress, which was held from August 12 to August 25, 1973 at the University of Western Ontario, London, Ontario. The Canadian Mathematical Congress has held Biennual Seminars since 19~7, and these have covered a wide range of topics. The Seminar reported in this publication was concerned with "Optimal Control Theory and its Applications", a subject chosen for its active ~rowth and its wide implications for other fields. Both these aspects are exemplified in these Proceedings. Some lectures provided excellent surveys of particular fields whereas others concentrated on the presentation of new results. There were six distinguished Principal Lecturers: H.T. Banks, A.R. Dobell, H. Halkin, J.L. Lions, R.M. Thrall and W.M. Wonham, all of whom gave five to ten lectures during the two weeks of the Seminar. Except for Dr. Dobell's, these will all be found in Volume 105. Besides the Principal Lecturers there were three Guest Lecturers: M.C. Delfour, V. Jurdjevic and S.P. Sethi, who presented substantial bodies of material in two or three lectures and which are included in Volume 106. Many of the participants also spoke and reports of ~0st of these have also been included (Volume 106).




Control of Distributed Parameter Systems 1982


Book Description

Control of Distributed Parameter Systems 1982 covers the proceeding of the Third International Federation of Automatic Control (IFAC) Symposium on Control of Distributed Parameter Systems. The book reviews papers that tackle issues concerning the control of distributed parameter systems, such as modeling, identification, estimation, stabilization, optimization, and energy system. The topics that the book tackles include notes on optimal and estimation result of nonlinear systems; approximation of the parameter identification problem in distributed parameters systems; and optimal control of a punctually located heat source. This text also encompasses the stabilization of nonlinear parabolic equations and the decoupling approach to the control of large spaceborne antenna systems. Stability of Hilbert space contraction semigroups and the tracking problem in the fractional representation approach are also discussed. This book will be of great interest to researchers and professionals whose work concerns automated control systems.




Infinite-Dimensional Dynamical Systems


Book Description

This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.




Stability of Dynamical Systems


Book Description

The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions. Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions - Specialization of this stability theory to finite-dimensional dynamical systems - Specialization of this stability theory to infinite-dimensional dynamical systems Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems. It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences. Review of the First Edition: “The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems. [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.” - Alessandro Astolfi, IEEE Control Systems Magazine, February 2009




Analysis and Approximation of Rare Events


Book Description

This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.