Qualitative Theory of Parabolic Equations, Part 1


Book Description

In the qualitative theory of ordinary differential equations, the Liapunov method plays a fundamental role. To use their analogs for the analysis of stability of solutions to parabolic, hyperparabolic, and other nonclassical equations and systems, time-invariant a priori estimates have to be devised for solutions. In this publication only parabolic problems are considered. Here lie, mainly, the problems which have been investigated most thoroughly --- the construction of Liapunov functionals which naturally generalize Liapunov functions for nonlinear parabolic equations of the second order with one spatial variable. The authors establish stabilizing solutions theorems, and the necessary and sufficient conditions of general and asymptotic stability of stationary solutions, including the so-called critical case. Attraction domains for stable solutions of mixed problems for these equations are described. Furthermore, estimates for the number of stationary solutions are obtained.










Nonlinear Parabolic Equations


Book Description




Blow-up Theories for Semilinear Parabolic Equations


Book Description

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations.




Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications


Book Description

Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un







Parabolic Equations with Irregular Data and Related Issues


Book Description

This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.




Second Order Equations of Elliptic and Parabolic Type


Book Description

Most books on elliptic and parabolic equations emphasize existence and uniqueness of solutions. By contrast, this book focuses on the qualitative properties of solutions. In addition to the discussion of classical results for equations with smooth coefficients (Schauder estimates and the solvability of the Dirichlet problem for elliptic equations; the Dirichlet problem for the heat equation), the book describes properties of solutions to second order elliptic and parabolic equations with measurable coefficients near the boundary and at infinity. The book presents a fine elementary introduction to the theory of elliptic and parabolic equations of second order. The precise and clear exposition is suitable for graduate students as well as for research mathematicians who want to get acquainted with this area of the theory of partial differential equations.




Second Order Equations of Elliptic and Parabolic Type


Book Description

Most books on elliptic and parabolic equations emphasize existence and uniqueness of solutions. By contrast, this book focuses on the qualitative properties of solutions. In addition to the discussion of classical results for equations with smooth coefficients (Schauder estimates and the solvability of the Dirichlet problem for elliptic equations; the Dirichlet problem for the heat equation), the book describes properties of solutions to second order elliptic and parabolic equations with measurable coefficients near the boundary and at infinity. The book presents a fine elementary introduction to the theory of elliptic and parabolic equations of second order. The precise and clear exposition is suitable for graduate students as well as for research mathematicians who want to get acquainted with this area of the theory of partial differential equations.