Data Quality


Book Description

Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality Butterfly effect of data quality A detailed description of data quality dimensions and their measurement Data quality strategy approach Six Sigma - DMAIC approach to data quality Data quality management techniques Data quality in relation to data initiatives like data migration, MDM, data governance, etc. Data quality myths, challenges, and critical success factors Students, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout. About the Author Rupa Mahanti, Ph.D. is a Business and Information Management consultant and has worked in different solution environments and industry sectors in the United States, United Kingdom, India, and Australia. She helps clients with activities such as business process mapping, information management, data quality, and strategy. Having a work experience (academic, industry, and research) of more than a decade and half, Rupa has guided a doctoral dissertation and published a large number of research articles. She is an associate editor with the journal Software Quality Professional and a reviewer for several international journals. "This is not the kind of book that you'll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective." from the foreword by Thomas C. Redman, Ph.D., the Data Doc Dr. Mahanti provides a very detailed and thorough coverage of all aspects of data quality management that would suit all ranges of expertise from a beginner to an advanced practitioner. With plenty of examples, diagrams, etc. the book is easy to follow and will deepen your knowledge in the data domain. I will certainly keep this handy as my go-to reference. I can't imagine the level of effort and passion that Dr. Mahanti has put into this book that captures so much knowledge and experience for the benefit of the reader. I would highly recommend this book for its comprehensiveness, depth, and detail. A must-have for a data practitioner at any level. Clint D'Souza, CEO and Director, CDZM Consulting




Data Mining: Concepts and Techniques


Book Description

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data




The Lifecycle of Software Objects


Book Description

What's the best way to create artificial intelligence? In 1950, Alan Turing wrote, "Many people think that a very abstract activity, like the playing of chess, would be best. It can also be maintained that it is best to provide the machine with the best sense organs that money can buy, and then teach it to understand and speak English. This process could follow the normal teaching of a child. Things would be pointed out and named, etc. Again I do not know what the right answer is, but I think both approaches should be tried." The first approach has been tried many times in both science fiction and reality. In this new novella, at over 30,000 words, his longest work to date, Ted Chiang offers a detailed imagining of how the second approach might work within the contemporary landscape of startup companies, massively-multiplayer online gaming, and open-source software. It's a story of two people and the artificial intelligences they helped create, following them for more than a decade as they deal with the upgrades and obsolescence that are inevitable in the world of software. At the same time, it's an examination of the difference between processing power and intelligence, and of what it means to have a real relationship with an artificial entity.







Object-oriented Data Structures Using Java


Book Description

Data Structures in Java is a continuation of Nell Dale's best-selling Introduction to Java and Software Design text. Data Structures is designed for students who have already taken one semester of computer science and are able to take a problem of medium complexity, write an algorithm to solve the problem, code the algorithm in a programming language, and demonstrate the correctness of their solution. The focus is on teaching computer science principles with chapter concepts being reinforced by case studies. The object-oriented concepts of encapsulation, inheritance, and polymorphism are covered, while the book remains centered on abstract data types.










Code Complete


Book Description

Annotation Widely considered one of the best practical guides to programming, Steve McConnell's original CODE COMPLETE has been helping developers write better software for more than a decade. Now this classic book has been fully updated and revised with leading-edge practices--and hundreds of new code samples--illustrating the art and science of software construction. Capturing the body of knowledge available from research, academia, and everyday commercial practice, McConnell synthesizes the most effective techniques and must-know principles into clear, pragmatic guidance. No matter what your experience level, development environment, or project size, this book will inform and stimulate your thinking--and help you build the highest quality code. Discover the timeless techniques and strategies that help you: Design for minimum complexity and maximum creativity Reap the benefits of collaborative development Apply defensive programming techniques to reduce and flush out errors Exploit opportunities to refactor--or evolve--code, and do it safely Use construction practices that are right-weight for your project Debug problems quickly and effectively Resolve critical construction issues early and correctly Build quality into the beginning, middle, and end of your project




Object-oriented Systems Analysis


Book Description

This book explains how to model a problem domain by abstracting objects, attributes, and relationships from observations of the real world. It provides a wealth of examples, guidelines, and suggestions based on the authors' extensive experience in both real time and commercial software development. This book describes the first of three steps in the method of Object-Oriented Analysis. Subsequent steps are described in Object Lifecycles by the same authors.




Spring Data


Book Description

You can choose several data access frameworks when building Java enterprise applications that work with relational databases. But what about big data? This hands-on introduction shows you how Spring Data makes it relatively easy to build applications across a wide range of new data access technologies such as NoSQL and Hadoop. Through several sample projects, you’ll learn how Spring Data provides a consistent programming model that retains NoSQL-specific features and capabilities, and helps you develop Hadoop applications across a wide range of use-cases such as data analysis, event stream processing, and workflow. You’ll also discover the features Spring Data adds to Spring’s existing JPA and JDBC support for writing RDBMS-based data access layers. Learn about Spring’s template helper classes to simplify the use of database-specific functionality Explore Spring Data’s repository abstraction and advanced query functionality Use Spring Data with Redis (key/value store), HBase (column-family), MongoDB (document database), and Neo4j (graph database) Discover the GemFire distributed data grid solution Export Spring Data JPA-managed entities to the Web as RESTful web services Simplify the development of HBase applications, using a lightweight object-mapping framework Build example big-data pipelines with Spring Batch and Spring Integration