Ultrafast Ultrasound Imaging


Book Description

This book is a printed edition of the Special Issue "Ultrafast Ultrasound Imaging" that was published in Applied Sciences




High Resolution Imaging in Microscopy and Ophthalmology


Book Description

This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.




Encyclopedia of Diagnostic Imaging


Book Description

The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The simple A to Z format provides easy access to relevant information. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. The wide range of entries will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.




Contrast Media in Ultrasonography


Book Description

Examines in detail the different clinical applications of microbubble-based contrast agents. Explains the principles underlying the use of contrast-specific imaging techniques and the examination methodology. Contains numerous high-quality illustrations, including many in color. Written by recognized experts.




Particle Image Velocimetry


Book Description

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.




Ultrasound Elastography


Book Description

Elastography, the science of creating noninvasive images of mechanical characteristics of tissues, has been rapidly evolving in recent years. The advantage of this technique resides in the ability to rapidly detect and quantify the changes in the stiffness of soft tissues resulting from specific pathological or physiological processes. Ultrasound elastography is nowadays applied especially on the liver and breast, but the technique has been increasingly used for other tissues including the thyroid, lymph nodes, spleen, pancreas, gastrointestinal tract, kidney, prostate, and the musculoskeletal and vascular systems. This book presents some of the applications of strain and shear-wave ultrasound elastography in hepatic, pancreatic, breast, and musculoskeletal conditions.




Acute Ischemic Stroke


Book Description

This updated second edition of Acute Ischemic Stroke: Imaging and Intervention provides a comprehensive account of the state of the art in the diagnosis and treatment of acute ischemic stroke. The basic format of the first edition has been retained, with sections on fundamentals such as pathophysiology and causes, imaging techniques and interventions. However, each chapter has been revised to reflect the important recent progress in advanced neuroimaging and the use of interventional tools. In addition, a new chapter is included on the classification instruments for ischemic stroke and their use in predicting outcomes and therapeutic triage. All of the authors are internationally recognized experts and members of the interdisciplinary stroke team at the Massachusetts General Hospital and Harvard Medical School. The text is supported by numerous informative illustrations, and ease of reference is ensured through the inclusion of suitable tables. This book will serve as a unique source of up-to-date information for neurologists, emergency physicians, radiologists and other health care providers who care for the patient with acute ischemic stroke.




Magnetic Resonance Elastography


Book Description

The first book to cover the groundbreaking development and clinical applications of Magnetic Resonance Elastography, this book is essential for all practitioners interested in this revolutionary diagnostic modality. The book is divided into three sections. The first covers the history of MRE. The second covers technique and clinical applications of MRE in the liver with respect to fibrosis, liver masses, and other diseases. Case descriptions are presented to give the reader a hands-on approach. The final section presents the techniques, sequence and preliminary results of applications in other areas of the body including muscle, brain, lung, heart, and breast.




Ultrasonography in Gynecology


Book Description

Ultrasonography is a cornerstone in the evaluation of gynecologic disease. This authoritative new book looks at the techniques of ultrasonography in both office and hospital settings, offering guidance on the optimal use of equipment and covering the full range of benign and malignant gynecologic disease as well as infertility. Ultrasonography in Gynecology offers extensive coverage of the diagnostic potential of ultrasound in gynecologic disease, from the moment the patient walks into the physician's office. All the different approaches in the ultrasonographic evaluation of disease – including 3D ultrasonography, 3D sonohysterography, Doppler imaging and pelvic floor imaging – are extensively covered, with color images throughout. Written and edited by leaders in the field of ultrasonography who have actively participated in national and international teaching courses, Ultrasonography in Gynecology is a must for all gynecologists dealing with infertility, endometriosis, uterine fibroids, gynecologic cancers, and many more gynecologic conditions.




Towards Personalized Models of the Cardiovascular System Using 4D Flow MRI


Book Description

Current diagnostic tools for assessing cardiovascular disease mostly focus on measuring a given biomarker at a specific spatial location where an abnormality is suspected. However, as a result of the dynamic and complex nature of the cardiovascular system, the analysis of isolated biomarkers is generally not sufficient to characterize the pathological mechanisms behind a disease. Model-based approaches that integrate the mechanisms through which different components interact, and present possibilities for system-level analyses, give us a better picture of a patient’s overall health status. One of the main goals of cardiovascular modelling is the development of personalized models based on clinical measurements. Recent years have seen remarkable advances in medical imaging and the use of personalized models is slowly becoming a reality. Modern imaging techniques can provide an unprecedented amount of anatomical and functional information about the heart and vessels. In this context, three-dimensional, three-directional, cine phase-contrast (PC) magnetic resonance imaging (MRI), commonly referred to as 4D Flow MRI, arises as a powerful tool for creating personalized models. 4D Flow MRI enables the measurement of time-resolved velocity information with volumetric coverage. Besides providing a rich dataset within a single acquisition, the technique permits retrospective analysis of the data at any location within the acquired volume. This thesis focuses on improving subject-specific assessment of cardiovascular function through model-based analysis of 4D Flow MRI data. By using computational models, we aimed to provide mechanistic explanations of the underlying physiological processes, derive novel or improved hemodynamic markers, and estimate quantities that typically require invasive measurements. Paper I presents an evaluation of current markers of stenosis severity using advanced models to simulate flow through a stenosis. Paper II presents a framework to personalize a reduced-order, mechanistic model of the cardiovascular system using exclusively non-invasive measurements, including 4D Flow MRI data. The modelling approach can unravel a number of clinically relevant parameters from the input data, including those representing the contraction and relaxation patterns of the left ventricle, and provide estimations of the pressure-volume loop. In Paper III, this framework is applied to study cardiovascular function at rest and during stress conditions, and the capability of the model to infer load-independent measures of heart function based on the imaging data is demonstrated. Paper IV focuses on evaluating the reliability of the model parameters as a step towards translation of the model to the clinic.