Quantifying the Evolution of Early Life


Book Description

This volume provides a detailed description of a wide range of numerical, statistical or modeling techniques and novel instrumentation separated into individual chapters written by paleontologists with expertise in the given methodology. Each chapter outlines the strengths and limitations of specific numerical or technological approaches, and ultimately applies the chosen method to a real fossil dataset or sample type. A unifying theme throughout the book is the evaluation of fossils during the prologue and epilogue of one of the most exciting events in Earth History: the Cambrian radiation.




The Science of Science


Book Description

This is the first comprehensive overview of the exciting field of the 'science of science'. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists, policy makers, and administrators with an interest in the wider scientific enterprise.




Quantifying Life


Book Description

Since the time of Isaac Newton, physicists have used mathematics to describe the behavior of matter of all sizes, from subatomic particles to galaxies. In the past three decades, as advances in molecular biology have produced an avalanche of data, computational and mathematical techniques have also become necessary tools in the arsenal of biologists. But while quantitative approaches are now providing fundamental insights into biological systems, the college curriculum for biologists has not caught up, and most biology majors are never exposed to the computational and probabilistic mathematical approaches that dominate in biological research. With Quantifying Life, Dmitry A. Kondrashov offers an accessible introduction to the breadth of mathematical modeling used in biology today. Assuming only a foundation in high school mathematics, Quantifying Life takes an innovative computational approach to developing mathematical skills and intuition. Through lessons illustrated with copious examples, mathematical and programming exercises, literature discussion questions, and computational projects of various degrees of difficulty, students build and analyze models based on current research papers and learn to implement them in the R programming language. This interplay of mathematical ideas, systematically developed programming skills, and a broad selection of biological research topics makes Quantifying Life an invaluable guide for seasoned life scientists and the next generation of biologists alike.




Earth System Evolution and Early Life


Book Description

This volume in memory of Professor Martin Brasier, which has many of his unfinished works, summarizes recent progress in some of the hottest topics in palaeobiology including cellular preservation of early microbial life and early evolution of macroscopic animal life, encompassing the Ediacara biota. The papers focus on how to decipher evidence for early life, which requires exceptional preservation, employment of state-of-the-art techniques and also an understanding gleaned from Phanerozoic lagerstätte and modern analogues. The papers also apply Martin’s MOFAOTYOF principle (my oldest fossils are older than your oldest fossils), requiring an integrated approach to understanding fossils. The adoption of the null-hypothesis that all putative traces of life are abiotic until proven otherwise, and the consideration of putative fossils within their spatial context, characterized the work of Martin Brasier, as is well demonstrated by the papers in this volume.




Rates of Evolution


Book Description

An overview of evolutionary rates, analyzing data from laboratory, field and fossil record studies to extract their underlying generation-to-generation rates.




Reading the Archive of Earth’s Oxygenation


Book Description

Earth’s present-day environments are the outcome of a 4.5 billion year period of evolution reflecting the interaction of global-scale geological and biological processes. Punctuating that evolution were several extraordinary events and episodes that perturbed the entire Earth system and led to the creation of new environmental conditions, sometimes even to fundamental changes in how planet Earth operated. Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Earth Project represents another kind of illustrated journey through the early Palaeoproterozoic, provided by syntheses, reviews and summaries of the current state of our understanding of a series of global events that resulted in a fundamental change of the Earth System from an anoxic to an oxic state. The book discusses traces of life, possible causes for the Huronian-age glaciations, addresses radical changes in carbon, sulphur and phosphorus cycles during the Palaeoproterozoic, and provides a comprehensive description and a rich photo-documentation of the early Palaeoproterozoic supergiant, petrified oil-field. Terrestrial environments are characterised through a critical review of available data on weathered and calichified surfaces and travertine deposits. Potential implementation of Ca, Mg, Sr, Fe, Mo, U and Re-Os isotope systems for deciphering Palaeoproterozoic seawater chemistry and a change in the redox-state of water and sedimentary columns are discussed. The volume considers in detail the definition of the oxic atmosphere, possible causes for the oxygen rise, and considers the oxidation of terrestrial environment not as a single event, but a slow-motion process lasting over hundreds of millions of years. Finally, the book provides a roadmap as to how the FAR-DEEP cores may facilitate future interesting science and provide a new foundation for education in earth-science community. Welcome to the illustrative journey through one of the most exciting periods of planet Earth!




Biodiversity Conservation and Phylogenetic Systematics


Book Description

This book is about phylogenetic diversity as an approach to reduce biodiversity losses in this period of mass extinction. Chapters in the first section deal with questions such as the way we value phylogenetic diversity among other criteria for biodiversity conservation; the choice of measures; the loss of phylogenetic diversity with extinction; the importance of organisms that are deeply branched in the tree of life, and the role of relict species. The second section is composed by contributions exploring methodological aspects, such as how to deal with abundance, sampling effort, or conflicting trees in analysis of phylogenetic diversity. The last section is devoted to applications, showing how phylogenetic diversity can be integrated in systematic conservation planning, in EDGE and HEDGE evaluations. This wide coverage makes the book a reference for academics, policy makers and stakeholders dealing with biodiversity conservation.




The Origin and Nature of Life on Earth


Book Description

Uniting the foundations of physics and biology, this groundbreaking multidisciplinary and integrative book explores life as a planetary process.




Treatise on Geochemistry


Book Description

This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added. In a many-faceted field such as Geochemistry, explaining and understanding how one sub-field relates to another is key. Instructors will find the complete overviews with extensive cross-referencing useful additions to their course packs and students will benefit from the contextual organization of the subject matter Six new volumes added and 66% updated from 1st edition. The Editors of this work have taken every measure to include the many suggestions received from readers and ensure comprehensiveness of coverage and added value in this 2nd edition The esteemed Board of Volume Editors and Editors-in-Chief worked cohesively to ensure a uniform and consistent approach to the content, which is an amazing accomplishment for a 15-volume work (16 volumes including index volume)!




Encyclopedia of Geology


Book Description

Encyclopedia of Geology, Second Edition presents in six volumes state-of-the-art reviews on the various aspects of geologic research, all of which have moved on considerably since the writing of the first edition. New areas of discussion include extinctions, origins of life, plate tectonics and its influence on faunal provinces, new types of mineral and hydrocarbon deposits, new methods of dating rocks, and geological processes. Users will find this to be a fundamental resource for teachers and students of geology, as well as researchers and non-geology professionals seeking up-to-date reviews of geologic research. Provides a comprehensive and accessible one-stop shop for information on the subject of geology, explaining methodologies and technical jargon used in the field Highlights connections between geology and other physical and biological sciences, tackling research problems that span multiple fields Fills a critical gap of information in a field that has seen significant progress in past years Presents an ideal reference for a wide range of scientists in earth and environmental areas of study