Quantitative Imaging Tools for Lung Cancer Drug Assessment


Book Description

Presents chapters written by leading clinical researchers in the field of lung cancer, where high resolution 3-D imaging technology appears to hold the greatest near-term promise, as well as contributions from recognized experts in CAD, medical information technology systems, regulatory procedure, x-ray standards development, and clinical trial design. These expert contributors discuss the current state of the art and provide a road map for directing further research in lung cancer as well as other organ systems.




Lung Cancer Imaging


Book Description

While specialists often guide the care to lung cancer patients, it is often a general radiologist who is left to interpret studies that impact patient care and management. Lung Cancer Imaging provides a comprehensive guide to the diagnosis, staging and overview of the management of lung cancer relevant to practicing radiologists so that they can better understand the decision making issues and provide more directed and useful communication to the treating physicians. It Primary Care physicians will also find this book valuable to understand the relevant issues that they face when one of their patients is being treated for lung cancer.




Lung Cancer and Personalized Medicine


Book Description

This, the first of two volumes on personalized medicine in lung cancer, touches on the core issues related to the understanding of lung cancer—statistics and epidemiology of lung cancer—along with the incidence of lung cancer in non-smokers. A major focus of this volume is the state of current therapies against lung cancer—immune, targeted therapies against EGFR TKIs, KRAS, ALK, angiogenesis; the associated challenges, especially resistance mechanisms; and recent progress in targeted drug development based on metal chemistry. Chapters are written by some of the leading experts in the field, who provide a better understanding of lung cancer, the factors that make it lethal, and current research focused on developing personalized treatment plans. With a unique mix of topics, this volume summarizes the current state-of-knowledge on lung cancer and the available therapies.




DICOM Structured Reporting


Book Description




Clinical CT


Book Description

Aims to give radiographers working in CT on a regular basis an extended knowledge of CT protocols and how they should be adapted to optimise image quality.




Brain Tumor Imaging


Book Description

This book describes the basics, the challenges and the limitations of state of the art brain tumor imaging and examines in detail its impact on diagnosis and treatment monitoring. It opens with an introduction to the clinically relevant physical principles of brain imaging. Since MR methodology plays a crucial role in brain imaging, the fundamental aspects of MR spectroscopy, MR perfusion and diffusion-weighted MR methods are described, focusing on the specific demands of brain tumor imaging. The potential and the limits of new imaging methodology are carefully addressed and compared to conventional MR imaging. In the main part of the book, the most important imaging criteria for the differential diagnosis of solid and necrotic brain tumors are delineated and illustrated in examples. A closing section is devoted to the use of MR methods for the monitoring of brain tumor therapy. The book is intended for radiologists, neurologists, neurosurgeons, oncologists and other scientists in the biomedical field with an interest in neuro-oncology.




Pulmonary Functional Imaging


Book Description

This book reviews the basics of pulmonary functional imaging using new CT and MR techniques and describes the clinical applications of these techniques in detail. The intention is to equip readers with a full understanding of pulmonary functional imaging that will allow optimal application of all relevant techniques in the assessment of a variety of diseases, including COPD, asthma, cystic fibrosis, pulmonary thromboembolism, pulmonary hypertension, lung cancer and pulmonary nodule. Pulmonary functional imaging has been promoted as a research and diagnostic tool that has the capability to overcome the limitations of morphological assessments as well as functional evaluation based on traditional nuclear medicine studies. The recent advances in CT and MRI and in medical image processing and analysis have given further impetus to pulmonary functional imaging and provide the basis for future expansion of its use in clinical applications. In documenting the utility of state-of-the-art pulmonary functional imaging in diagnostic radiology and pulmonary medicine, this book will be of high value for chest radiologists, pulmonologists, pulmonary surgeons, and radiation technologists.




Radiomics and Radiogenomics


Book Description

Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation




PET/CT in Lung Cancer


Book Description

This concise, excellently illustrated pocket book provides an up-to-date summary of the science and practice of PET/CT imaging in lung cancer. The coverage encompasses the entire spectrum of lung cancer – pathology, radiological and PET/CT imaging, and management. Readers will also find information on the physics of PET and its use in respiratory gating and radiotherapy planning. The highlights of the book are the exquisite depiction of normal variants, pitfalls, and artifacts and a pictorial atlas of the various types of lung cancer and their manifestations. The contributing authors are well-known and experienced oncologists, pathologists, radiologists, and nuclear physicians. This book has been compiled under the auspices of the British Nuclear Medicine Society. It will be of high value for nuclear physicians, radiologists, referring clinicians and oncologists, and paramedical staff working in these fields




The Drug Development Paradigm in Oncology


Book Description

Advances in cancer research have led to an improved understanding of the molecular mechanisms underpinning the development of cancer and how the immune system responds to cancer. This influx of research has led to an increasing number and variety of therapies in the drug development pipeline, including targeted therapies and associated biomarker tests that can select which patients are most likely to respond, and immunotherapies that harness the body's immune system to destroy cancer cells. Compared with standard chemotherapies, these new cancer therapies may demonstrate evidence of benefit and clearer distinctions between efficacy and toxicity at an earlier stage of development. However, there is a concern that the traditional processes for cancer drug development, evaluation, and regulatory approval could impede or delay the use of these promising cancer treatments in clinical practice. This has led to a number of effortsâ€"by patient advocates, the pharmaceutical industry, and the Food and Drug Administration (FDA)â€"to accelerate the review of promising new cancer therapies, especially for cancers that currently lack effective treatments. However, generating the necessary data to confirm safety and efficacy during expedited drug development programs can present a unique set of challenges and opportunities. To explore this new landscape in cancer drug development, the National Academies of Sciences, Engineering, and Medicine developed a workshop held in December 2016. This workshop convened cancer researchers, patient advocates, and representatives from industry, academia, and government to discuss challenges with traditional approaches to drug development, opportunities to improve the efficiency of drug development, and strategies to enhance the information available about a cancer therapy throughout its life cycle in order to improve its use in clinical practice. This publication summarizes the presentations and discussions from the workshop.