Quantitative Systems Biology for Engineering Organisms and Pathways


Book Description

Studying organisms as a whole for potential metabolic(ally) engineering of organisms for production of (bio)chemicals is essential for industrial biotechnology. To this end, integrative analysis of different –omics measurements (transciptomics, proteomics, metabolomics, fluxomics) provides invaluable information. Combination of experimental top-down and bottom-up approaches with powerful analytical tools/techniques and mathematical modeling, namely (quantitative) systems biology, currently making the state of art of this discipline, is the only practice that would improve our understanding for the purpose. The use of high-throughput technologies induced the required development of many bioinformatics tools and mathematical methods for the integration of obtained data. Such research is significant since compiling information from different levels of a living system and connecting them is not an easy task. In particular, construction of dynamic models for product improvement has been one of the goals of many research groups. In this Research Topic, we summarize and bring a general review of the most recent and relevant contributions in quantitative systems biology applied in metabolic modeling perspective. We want to make special emphasis on the techniques that can be widely implemented in regular scientific laboratories and in those works that include theoretical presentations. With this Research Topic we discuss the importance of applying systems biology approaches for finding metabolic engineering targets for the efficient production of the desired biochemical integrating information from genomes and networks to industrial production. Examples and perspectives in the design of new industrially relevant chemicals, e.g. increased titer/productivity/yield of (bio)chemicals, are welcome. Addition to the founded examples, potential new techniques that would frontier the research will be part of this topic. The significance of multi ‘omics’ approaches to understand/uncover the pathogenesis/mechanisms of metabolic disesases is also one of the main topics.




The Science and Applications of Synthetic and Systems Biology


Book Description

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.




Quantitative Systems Biology for Engineering Organisms and Pathways


Book Description

Studying organisms as a whole for potential metabolic(ally) engineering of organisms for production of (bio)chemicals is essential for industrial biotechnology. To this end, integrative analysis of different -omics measurements (transciptomics, proteomics, metabolomics, fluxomics) provides invaluable information. Combination of experimental top-down and bottom-up approaches with powerful analytical tools/techniques and mathematical modeling, namely (quantitative) systems biology, currently making the state of art of this discipline, is the only practice that would improve our understanding for the purpose. The use of high-throughput technologies induced the required development of many bioinformatics tools and mathematical methods for the integration of obtained data. Such research is significant since compiling information from different levels of a living system and connecting them is not an easy task. In particular, construction of dynamic models for product improvement has been one of the goals of many research groups. In this Research Topic, we summarize and bring a general review of the most recent and relevant contributions in quantitative systems biology applied in metabolic modeling perspective. We want to make special emphasis on the techniques that can be widely implemented in regular scientific laboratories and in those works that include theoretical presentations. With this Research Topic we discuss the importance of applying systems biology approaches for finding metabolic engineering targets for the efficient production of the desired biochemical integrating information from genomes and networks to industrial production. Examples and perspectives in the design of new industrially relevant chemicals, e.g. increased titer/productivity/yield of (bio)chemicals, are welcome. Addition to the founded examples, potential new techniques that would frontier the research will be part of this topic. The significance of multi 'omics' approaches to understand/uncover the pathogenesis/mechanisms of metabolic diseases is also one of the main topics.




Systems Biology and Synthetic Biology


Book Description

The genomic revolution has opened up systematic investigations and engineering designs for various life forms. Systems biology and synthetic biology are emerging as two complementary approaches, which embody the breakthrough in biology and invite application of engineering principles. Systems Biology and Synthetic Biology emphasizes the similarity between biology and engineering at the system level, which is important for applying systems and engineering theories to biology problems. This book demonstrates to students, researchers, and industry that systems biology relies on synthetic biology technologies to study biological systems, while synthetic biology depends on knowledge obtained from systems biology approaches.




Systems and Synthetic Metabolic Engineering


Book Description

Systems and Synthetic Metabolic Engineering provides an overview of the development of metabolic engineering within medicine that is fueled by systems and synthetic biology. These newly developed, successful strategies of metabolic engineering guide the audience on how to propose and test proper strategies for metabolic engineering research. In addition to introductory, regulatory and challenges in the field, the book also covers dynamic control and autonomous regulation to control cell metabolism, along with computational modeling and industrial applications. The book is written by leaders in the field, making it ideal for synthetic biologists, researchers, students and anyone working in this area. - Discusses the current progress of metabolic engineering, focusing on systems biology and synthetic biology - Covers introductory, regulatory, strategies, production and challenges in the field - Written technically for synthetic biologists, researchers, students, industrialists, policymakers and stakeholders




Globalization, Biosecurity, and the Future of the Life Sciences


Book Description

Biomedical advances have made it possible to identify and manipulate features of living organisms in useful ways-leading to improvements in public health, agriculture, and other areas. The globalization of scientific and technical expertise also means that many scientists and other individuals around the world are generating breakthroughs in the life sciences and related technologies. The risks posed by bioterrorism and the proliferation of biological weapons capabilities have increased concern about how the rapid advances in genetic engineering and biotechnology could enable the production of biological weapons with unique and unpredictable characteristics. Globalization, Biosecurity, and the Future of Life Sciences examines current trends and future objectives of research in public health, life sciences, and biomedical science that contain applications relevant to developments in biological weapons 5 to 10 years into the future and ways to anticipate, identify, and mitigate these dangers.




Computational Biology and Applied Bioinformatics


Book Description

Nowadays it is difficult to imagine an area of knowledge that can continue developing without the use of computers and informatics. It is not different with biology, that has seen an unpredictable growth in recent decades, with the rise of a new discipline, bioinformatics, bringing together molecular biology, biotechnology and information technology. More recently, the development of high throughput techniques, such as microarray, mass spectrometry and DNA sequencing, has increased the need of computational support to collect, store, retrieve, analyze, and correlate huge data sets of complex information. On the other hand, the growth of the computational power for processing and storage has also increased the necessity for deeper knowledge in the field. The development of bioinformatics has allowed now the emergence of systems biology, the study of the interactions between the components of a biological system, and how these interactions give rise to the function and behavior of a living being. This book presents some theoretical issues, reviews, and a variety of bioinformatics applications. For better understanding, the chapters were grouped in two parts. In Part I, the chapters are more oriented towards literature review and theoretical issues. Part II consists of application-oriented chapters that report case studies in which a specific biological problem is treated with bioinformatics tools.




The Metabolic Pathway Engineering Handbook, Two Volume Set


Book Description

Christina Smolke, who recently developed a novel way to churn out large quantities of drugs from genetically modified brewer's yeast, is regarded as one of the most brilliant minds in biomedical engineering. In this handbook, she brings together pioneering scientists from dozens of disciplines to provide a complete record of accomplishment in metab




Systems Biology


Book Description

Genome sequences are now available that enable us to determine the biological components that make up a cell or an organism. The discipline of systems biology examines how these components interact and form networks, and how the networks generate whole cell functions corresponding to observable phenotypes. This textbook, devoted to systems biology, describes how to model networks, how to determine their properties, and how to relate these to phenotypic functions. The prerequisites are some knowledge of linear algebra and biochemistry. Though the links between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, in an associated website Palsson provides problem sets, projects and Powerpoint slides, and keeps the presentation in the book concrete with illustrative material and experimental results.




Introduction to Molecular Biology, Genomics and Proteomics for Biomedical Engineers


Book Description

Illustrates the Complex Biochemical Relations that Permit Life to ExistIt can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential to