Quantum Interacting Particle Systems


Book Description

The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.




Quantum Statistics of Charged Particle Systems


Book Description

The year 1985 represents a special anniversary for people dealing with Ooulomb systems. 200 years ago, in 1785, Oharles Auguste de Ooulomb (1736-1806) found "Ooulomb's law" for the interaction force between charged particles. The authors want to dedicate this book to the honour of the great pioneer of electrophysics. Recent statistical mechanics is mainly restricted to systems of neutral particles. Except for a few monographs and survey articles (see, e. g., IOHIMARU, 1973, 1982; KUDRIN, 1974; KLIMONTOVIOH, 1975; EBELING, KRAEFT and KREMP, 1976, 1979; KALMAN and CARINI, 1978; BAUS and HANSEN, 1980; GILL, 1981, VELO and WIGHT MAN, 1981; MATSUBARA, 1982) the extended material on charged particle systems, which is now available thanks to the efforts of many workers in statistical mechanics, is widely dispersed in many original articles. It is the aim of this monograph to represent at least some part of the known results on charged particle systems from a unified point of view. Here the method of Green's functions turns out to be a powerful method especially to overcome the difficulties connected with the statistical physics of charged particle systems; some of them are . mentioned in the introduction. Here we can point, e.g., to the appearance of bound states in a medium and their role as new entities.




Quantum Theory of Many-Particle Systems


Book Description

Self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 1971 edition.




Genealogies Of Interacting Particle Systems


Book Description

Interacting particle systems are Markov processes involving infinitely many interacting components. Since their introduction in the 1970s, researchers have found many applications in statistical physics and population biology. Genealogies, which follow the origin of the state of a site backwards in time, play an important role in their studies, especially for the biologically motivated systems.The program Genealogies of Interacting Particle Systems held at the Institute for Mathematical Sciences, National University of Singapore, from 17 July to 18 Aug 2017, brought together experts and young researchers interested in this modern topic. Central to the program were learning sessions where lecturers presented work outside of their own research, as well as a normal workshop. This is reflected in the present volume which contains two types of articles:Written by respected researchers, including experts in the field such as Steve Evans, member of the US National Academy of Sciences, as well as Anton Wakolbinger, Andreas Greven, and many others, this volume will no doubt be a valuable contribution to the probability community.




Quantum Many-particle Systems


Book Description

This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.




Genealogies of Interacting Particle Systems


Book Description

"Interacting particle systems are Markov processes involving infinitely many interacting components. Since their introduction in the 1970s, researchers have found many applications in statistical physics and population biology. Genealogies, which follow the origin of the state of a site backwards in time, play an important role in their studies, especially for the biologically motivated systems. The program Genealogies of Interacting Particle Systems held at the Institute for Mathematical Sciences, National University of Singapore, from 17 July to 18 Aug 2017, brought together experts and young researchers interested in this modern topic. Central to the program were learning sessions where lecturers presented work outside of their own research, as well as a normal workshop "--Publisher's website.




Stochastic Interacting Systems: Contact, Voter and Exclusion Processes


Book Description

Interactive particle systems is a branch of probability theory with close connections to mathematical physics and mathematical biology. This book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. It explains and develops many of the most useful techniques in the field.




Scattering Theory of Classical and Quantum N-Particle Systems


Book Description

This monograph addresses researchers and students. It is a modern presentation of time-dependent methods for studying problems of scattering theory in the classical and quantum mechanics of N-particle systems. Particular attention is paid to long-range potentials. For a large class of interactions the existence of the asymptotic velocity and the asymptotic completeness of the wave operators is shown. The book is self-contained and explains in detail concepts that deepen the understanding. As a special feature of the book, the beautiful analogy between classical and quantum scattering theory (e.g., for N-body Hamiltonians) is presented with deep insight into the physical and mathematical problems.




Active Particles, Volume 3


Book Description

This edited volume collects six surveys that present state-of-the-art results on modeling, qualitative analysis, and simulation of active matter, focusing on specific applications in the natural sciences. Following the previously published Active Particles volumes, these chapters are written by leading experts in the field and reflect the diversity of subject matter in theory and applications within an interdisciplinary framework. Topics covered include: Variability and heterogeneity in natural swarms Multiscale aspects of the dynamics of human crowds Mathematical modeling of cell collective motion triggered by self-generated gradients Clustering dynamics on graphs Random Batch Methods for classical and quantum interacting particle systems The consensus-based global optimization algorithm and its recent variants Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.




Quantum Theory of Finite Systems


Book Description

This book provides a comprehensive and pedagogical account of the various methods used in the quantum theory of finite systems, including molecular, atomic, nuclear, and particle phenomena. Covering both background material and advanced topics and including nearly 200 problems, Quantum Theory of Finite Systems has been designed to serve primarily as a text and will also prove useful as a reference in research. The first of the book's four parts introduces the basic mathematical apparatus: second quantization, canonical transformations, Wick theorems and the resulting diagram expansions, and oscillator models. The second part presents mean field approximations and the recently developed path integral methods for the quantization of collective modes. Part three develops perturbation theory in terms of both time-dependent Feynman diagrams and time-independent Goldstone diagrams. A fourth part discusses variational methods based on correlated wavefunctions, including spin correlations. The approximation schemes are formulated for fermions and bosons at eigher zero or non-zero temperature. Although the formalism developed applies to both finite and infinite systems, the book stresses those aspects of the theory that are specific to the description of finite systems. Thus special attention is given to mean field approximations, the ensuing broken symmetries, and the associated collective motions such as rotations. Conversely, some specific features of systems with infinite numbers of degrees of freedom (such as the thermodynamic limit, critical phenomena, and the elimination of ultraviolet divergencies) are deliberately omitted. Jean-Paul Blaizot and Georges Ripka are associated with the Centre d'Etudes Nucleaires de Saclay.