Quantum Mechanics with Non-Unitary Symmetries


Book Description

This book shows that with minimal modifications of postulates of non-relativistic quantum mechanics to allow for non-unitary representations of symmetry groups (Lorentz group in particular), one achieves a fully relativistic quantum theory without any of the issues (like negative energies, etc.) that led to the second quantization and QFT. It is shown that quite a few phenomena in elementary particle physics (like for example neutral kaon mixing, CP symmetry and it's supposed breaking) can be explained purely as a consequence of relativistic invariance and relativistic invariance alone. It is shown that by categorizing mesons via the representation of Lorentz group they belong to, one can explain a lot of their properties, as well as a lot of discrepancies in the particle data tables. It is also shown that based on properties of Lorentz representations of products of meson decays, a lot of excited states listed in PDG tables are really several different excitations with similar masses. Relativistic treatment of bound states in momentum space is developed and used to calculate decay widths of various composite particles like Positronium or mesons, and then those decay widths are used to calculate various properties of quarks (like their masses or charges) that were previously misunderstood. In particular, it is shown that quarks are actually quite heavy (around 3.5GeV for up/down quarks) and that while Lorentz invariance allows both fractional values (2/3, -1/3) as well as integer values (2,1), based on (very sparse) available experimental data, integer quark charges are more consistent with observed decay widths than fractional charges.




Quantum Worlds


Book Description

Offers a comprehensive and up-to-date volume on the conceptual and philosophical problems related to the interpretation of quantum mechanics.




Unitary Symmetry and Combinatorics


Book Description

Notation -- Quantum angular momentum -- Composite systems -- Graphs and adjacency diagrams -- Generating functions -- The D[lambda] polynomials: form -- Operator actions in Hilbert space -- The D[lambda] polynomials: structure -- The general linear and unitary groups -- Tensor operator theory -- Compendium A. Basic algebraic objects -- Compendium B. Combinatorial objects.




Physics from Symmetry


Book Description

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.




Quantum Mechanics


Book Description

This book contains discussions of radiation theory, quantum statistics and the many-body problem, and more advanced topics in collision theory. It is intended as a text for a first-year graduate quantum mechanics course.




Group Theory in a Nutshell for Physicists


Book Description

A concise, modern textbook on group theory written especially for physicists Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)




Foundations of Quantum Theory


Book Description

This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.




Symmetries and Group Theory in Particle Physics


Book Description

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.




Quantum Theory, Groups and Representations


Book Description

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.




Symmetries in Quantum Mechanics


Book Description

Symmetries in Quantum Mechanics: From Angular Momentum to Supersymmetry (PBK) provides a thorough, didactic exposition of the role of symmetry, particularly rotational symmetry, in quantum mechanics. The bulk of the book covers the description of rotations (geometrically and group-theoretically) and their representations, and the quantum theory of angular momentum. Later chapters introduce more advanced topics such as relativistic theory, supersymmetry, anyons, fractional spin, and statistics. With clear, in-depth explanations, the book is ideal for use as a course text for postgraduate and advanced undergraduate students in physics and those specializing in theoretical physics. It is also useful for researchers looking for an accessible introduction to this important area of quantum theory.