Quantum Stochastic Thermodynamics


Book Description

The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.




Thermodynamics in the Quantum Regime


Book Description

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.




Stochastic Thermodynamics


Book Description

The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course




Statistical Thermodynamics and Stochastic Kinetics


Book Description

Provides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level.




Quantum Thermodynamics and Optomechanics


Book Description

This thesis demonstrates the potential of two platforms to explore experimentally the emerging field of quantum thermodynamics that has remained mostly theoretical so far. It proposes methods to define and measure work in the quantum regime. The most important part of the thesis focuses on hybrid optomechanical devices, evidencing that they are proper candidates to measure directly the fluctuations of work and the corresponding fluctuation theorem. Such devices could also give rise to the observation of mechanical lasing and cooling, based on mechanisms similar to a heat engine. The final part of the thesis studies how quantum coherence can improve work extraction in superconducting circuits. All the proposals greatly clarify the concept of work since they are based on measurable quantities in state of the art devices.




Thermodynamics and Statistical Mechanics of Small Systems


Book Description

This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy




Stochastic Thermodynamics: An Introduction


Book Description

The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course




An Introduction to Statistical Mechanics and Thermodynamics


Book Description

This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.




Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems


Book Description

This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.




Statistical Mechanics of Lattice Systems


Book Description

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.