Quasiconformal Teichmuller Theory


Book Description

The Teichmüller space T(X) is the space of marked conformal structures on a given quasiconformal surface X. This volume uses quasiconformal mapping to give a unified and up-to-date treatment of T(X). Emphasis is placed on parts of the theory applicable to noncompact surfaces and to surfaces possibly of infinite analytic type. The book provides a treatment of deformations of complex structures on infinite Riemann surfaces and gives background for further research in many areas. These include applications to fractal geometry, to three-dimensional manifolds through its relationship to Kleinian groups, and to one-dimensional dynamics through its relationship to quasisymmetric mappings. Many research problems in the application of function theory to geometry and dynamics are suggested.




Lectures on Quasiconformal Mappings


Book Description

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It is remarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This edition includes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these three new chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings.










Teichmüller Theory and Quadratic Differentials


Book Description

Offers a unified treatment of both the modern and the classical aspects of Teichmuller theory. The classical parts of the theory include Teichmuller's theorem on the existence and uniqueness of an extremal quasiconformal mapping in a given homotopy class of mappings between Riemann surfaces, the theorems of Bers and Ahlfors on the completeness of Poincare theta series for general Fuchsian groups and the approximation of integrable holomorphic functions in a domain by rational functions with simple poles on the boundary of the domain. The modern aspects of the theory include Ahlfors's and Bers's natural complex analytic coordinates for Teichmuller space, the infinitesimal theory of Teichmuller's metric and Kobayashi's metric, Royden's theorem that the only biholomorphic self-mappings of Teichmuller's space are induced by elements of the modular group (the action of which group is discontinuous), the Hamilton-Krushkal necessary condition for extremality, and Reich and Strebel's proof of sufficiency.




Handbook of Teichmüller Theory


Book Description

The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.




Moduli Spaces of Riemann Surfaces


Book Description

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.




Quasiconformal Mappings, Riemann Surfaces, and Teichmuller Spaces


Book Description

This volume contains the proceedings of the AMS Special Session on Quasiconformal Mappings, Riemann Surfaces, and Teichmuller Spaces, held in honor of Clifford J. Earle, from October 2-3, 2010, in Syracuse, New York. This volume includes a wide range of papers on Teichmuller theory and related areas. It provides a broad survey of the present state of research and the applications of quasiconformal mappings, Riemann surfaces, complex dynamical systems, Teichmuller theory, and geometric function theory. The papers in this volume reflect the directions of research in different aspects of these fields and also give the reader an idea of how Teichmuller theory intersects with other areas of mathematics.




Handbook of Teichmüller Theory


Book Description

This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.