Fundamentals of Ionizing Radiation Dosimetry


Book Description

A new, comprehensively updated edition of the acclaimed textbook by F.H. Attix (Introduction to Radiological Physics and Radiation Dosimetry) taking into account the substantial developments in dosimetry since its first edition. This monograph covers charged and uncharged particle interactions at a level consistent with the advanced use of the Monte Carlo method in dosimetry; radiation quantities, macroscopic behaviour and the characterization of radiation fields and beams are covered in detail. A number of chapters include addenda presenting derivations and discussions that offer new insight into established dosimetric principles and concepts. The theoretical aspects of dosimetry are given in the comprehensive chapter on cavity theory, followed by the description of primary measurement standards, ionization chambers, chemical dosimeters and solid state detectors. Chapters on applications include reference dosimetry for standard and small fields in radiotherapy, diagnostic radiology and interventional procedures, dosimetry of unsealed and sealed radionuclide sources, and neutron beam dosimetry. The topics are presented in a logical, easy-to-follow sequence and the text is supplemented by numerous illustrative diagrams, tables and appendices. For senior undergraduate- or graduate-level students and professionals.




Introduction to Radiological Physics and Radiation Dosimetry


Book Description

A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.




Fundamentals of Radiation Dosimetry


Book Description

This book reviews ionising radiation quantities and the relationships between them and discusses the principles underlying their measurement. The emphasis is on the determination of absorbed dose and related dosimetric quantities.




Fundamentals of Radiation Dosimetry


Book Description

This book reviews ionising radiation quantities and the relationships between them and discusses the principles underlying their measurement. The emphasis is on the determination of absorbed dose and related dosimetric quantities.










Fundamentals of Nuclear Medicine Dosimetry


Book Description

Written by a leading international authority in the field, this book is ideal for physicians and residents in nuclear medicine who want to improve their knowledge in internal dosimetry. The text is a practical introduction that guides the reader through fundamental concepts in the calculation of radiation dose, including discussions of standardized models, methods of calculations, and available software applications. This comprehensive guide discusses too the biological effects of radiation on living systems. The book also includes an overview of regulatory aspects related to the radiation dosimetry of new radiopharmaceuticals.




Sources, Fields, Measurements, and Applications


Book Description

Radiation Dosimetry, Second Edition, VOLUME III: Sources, Fields, Measurements, and Applications covers the significant aspects of radiation dosimetry. The book discusses dosimetry relating to x rays and teleisotope gamma rays, discrete and distributed alpha-, beta-, and gamma-ray sources, electron beams, and heavy charged particle beams. The text also describes dosimetry relating to reactors, neutron and mixed n-gamma fields, neutrons from accelerators and radioactive sources, initial and residual ionizing radiation from nuclear weapons, natural and man-made background radiation, radiation in space, ultra-high energy radiation, and uncommon types of particles. Dosimetry relating to health physics, diobiology, radiotherapy, implant and intracavitary therapy, ""transition-zones"" (especially at bone-tissue interfaces), and radiation processing is also considered. Physicists, biophysicists, and people involved in radiological science will find the book invaluable.







Radiation Physics for Medical Physicists


Book Description

This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.