Radiative and Pionic Decays of Heavy-light Mesons Using HISQ Quarks


Book Description

In this thesis we use the highly improved staggered quark (HISQ) formalism to study the radiative and pionic transitions of charmed mesons within the framework of lattice QCD. The HISQ action is one of the most accurate formulations of charm quarks and is a result of a perturbative Symanzik improvement program to reduce lattice discretization errors. Decay widths are calculated in numerical simulations on an ensemble of gauge field configurations with $N_f=2+1$ asqtad sea quarks generated by the MILC collaboration. In addition we study $H_ŝ\ast$ and charmonium radiative decays as well as meson electric form factors. Experimental measurements of the decay ratios of vector charmed $D̂{\ast\pm0}$ and charmed strange $D_ŝ{\ast\pm}$ mesons, show a few curious features that are of great phenomenological interest in the study of low energy hadronic physics. Unlike most mesons, the strong hadronic decay modes of $D̂{\ast0}$ and $D_ŝ{\ast\pm}$, are not dominant. However, while the neutral $D$ has a radiative mode that is competitive with its pionic mode, the charged $D$ meson's radiative decay is highly suppressed relative to that of the neutral. This suppression provides a detailed probe of strong interactions and is apparently due to an interesting near cancellation that takes place between the photon's coupling to the charm quark and to the down antiquark. The results are in agreement with all of the available experimental data, and in particular, we show that the HISQ action successfully accounts for the near cancellation of the charmed $D̂{\ast\pm}$ radiative decay. The relative suppression is demonstrated in our result for the ratio of the radiative form factors of $D$ mesons $V̂\pm(0)/V̂0(0)=0.126(36)$ computed at heavier than physical $u/d$ quark masses. The quoted errors are purely statistical. Evidence from other lattice studies indicate small systematic errors in continuum and sea quark chiral extrapolations. Valence quark chiral extrapolation increases our errors by about 50\%. A rough extrapolation suggests an agreement with the measured radiative width within $2\sigma$.







Radiative Transitions in Heavy Mesons in a Relativistic Quark Model


Book Description

The radiative decays of D*, B*, and other excited heavy mesons are analyzed in a relativistic quark model for the light degrees of freedom and in the limit of heavy quark spin-flavor symmetry. The analysis of strong decays carried out in the corresponding chiral quark model is used to calculate the strong decays and determine the branching ratios of the radiative D* decays. Consistency with the observed branching ratios requires the inclusion of the heavy quark component of the electromagnetic current and the introduction of an anomalous magnetic moment for the light quark. It is observed that not only D, but also B meson transitions within a heavy quark spin multiplet are affected by the presence of the heavy quark current.







B-meson Decay Constants from 2+1-flavor Lattice QCD with Domain-wall Light Quarks and Relativistic Heavy Quarks


Book Description

We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M[pi] ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O([alpha]sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.




Decay Constants of P and D Wave Heavy Light Mesons


Book Description

We investigate decay constants of P- and D-wave heavy-light mesons within the mock-meson approach. Numerical estimates are obtained using the relativistic quark model. We also comment on recent calculations of heavy-light pseudo-scalar and vector decay constants.













Study of Scalar Mesons and Related Radiative Decays


Book Description

After a brief review of the puzzling light scalar meson sector of QCD, a brief summary will be given of a paper concerning radiative decays involving the light scalars. There, a simple vector meson dominance model is constructed in an initial attempt to relate a large number of the radiative decays involving a putative scalar nonet to each other. As an application it is illustrated why a0(980)-f0(980) mixing is not expected to greatly alter the f0/a0 production ratio for radiative [phi] decays.