Applied Nanophotonics


Book Description

An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.




Radiative Heat Transfer


Book Description

Offers a comprehensive treatment of heat transfer. In addition to the standard topics usually covered, it also includes a number of modern state-of-the-art topics including: radiative properties of particles, generation of P-N approximation and collimated irradiation.




Radiative Energy Transfer


Book Description

Radiative Energy Transfer presents the proceedings of the symposium on interdisciplinary aspects of radiative energy transfer held in Philadelphia, Pennsylvania on February 24-26, 1966. The book includes topics on the two main classical directions of radiative transfer: diagnostic techniques and energy exchanges. The text also covers topics on molecular band models, inversion techniques, scattering problems, and shock-wave structure. Topics on high-speed shocks, stellar atmospheres, and meteorology are also encompassed.




Atmospheric Radiative Transfer


Book Description

This book presents the basis of atmospheric radiative transfer for graduate students, as well as for scientists or engineers who want to start work in this domain. It supposes that the reader has reached a general college level in mathematics & physics. The first part covers the theory of radiative energy transfer & is of interest for a larger audience than only the atmospheric scientists. After carefully defining the various quantities characterizing radiation energy & its interaction with matter, the equation of radiative transfer is established & the laws of blackbody emission reviewed. One chapter presents the detection of radiative energy. The next chapters review the problems of quantitative spectroscopy & the transfer of energy in an absorbing & emitting medium. Finally, the laws of scattering are presented & the transfer of radiation in a scattering medium, including polarization, is analyzed.




Radiative Transfer in the Atmosphere and Ocean


Book Description

Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.




Radiative Processes in Astrophysics


Book Description

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.




Plasma Dynamics for Aerospace Engineering


Book Description

Provides a comprehensive review and usable problem-solving techniques for aerospace engineering plasma applications.




Thermal Radiative Transfer and Properties


Book Description

Not only enables readers to include radiation as part of their design and analysis but also appreciate the radiative transfer processes in both nature and engineering systems. Offers two distinguishing features--a whole chapter devoted to the classical dispersion theory which lays a foundation for the discussion of radiative properties presented throughout and a detailed description of particle radiative properties, including real particle size distribution effects. Presents numerous realistic and instructive illustrations and problems involving current topics such as planetary heat transfer, satellite thermal control, atmospheric radiation, radiation in industrial and propulsion combustion systems and more.




Climate Change and Terrestrial Ecosystem Modeling


Book Description

Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.




Single Molecule Tools, Part B: Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods


Book Description

Single molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part B: Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines