Radio Frequency System Architecture and Design


Book Description

Communication devices such as smart phones, GPS systems, and Bluetooth, are now part of our daily lives more than ever before. As our communication equipment becomes more sophisticated, so do the radios and other hardware required to enable that technology. Common radio architectures are required to make this technology work seamlessly. This resource describes practical aspects of radio frequency communications systems design, bridging the gap between system-level design considerations and circuit-level design specifications. Industry experts not only provide detailed calculations and theory to determine block level specifications, but also discuss basic theory and operational concepts. This resource also includes extensive, up-to-date application examples.




RF System Design of Transceivers for Wireless Communications


Book Description

This book is for RF Engineers and, in particular, those engineers focusing mostly on RF systems and RFIC design. The author develops systematic methods for RF systems design, complete with a comprehensive set of design formulas. Its focus on mobile station transmitter and receiver system design also applies to transceiver design of other wireless systems such as WLAN. This comprehensive reference work covers a wide range of topics from general principles of communication theory, as it applies to digital radio designs to specific examples on implementing multimode mobile systems.




Practical RF System Design


Book Description

The ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affect receiver noise figure and desensitization * How to determine the dynamic range of a cascade from module specifications * How phase noise affects system performance and where it comes from * How intermodulation products (IMs) predictably change with signal amplitude, and why they sometimes change differently An essential resource for today's RF system engineers, the text covers important topics in the areas of system noise and nonlinearity, frequency conversion, and phase noise. Along with a wealth of practical examples using MATLAB(r) and Excel, spreadsheets are available for download from an FTP Web site to help readers apply the methods outlined in this important resource.




Radio Frequency Integrated Circuit Design


Book Description

This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC-based filters, VCO automatic amplitude control loops, and fully integrated transformer-based circuits, as well as image reject mixers and power amplifiers. If you are new to RFIC design, you can benefit from the introduction to basic theory so you can quickly come up to speed on how RFICs perform and work together in a communications device. A thorough examination of RFIC technology guides you in knowing when RFICs are the right choice for designing a communication device. This leading-edge resource is packed with over 1,000 equations and more than 435 illustrations that support key topics.




Wireless Transceiver Architecture


Book Description

A fully comprehensive reference combining digital communications and RFIC (Radio Frequency Integrated Circuits) in one complete volume There are many books which focus on the physical implementation of the RF/analog part of transceivers, such as the CMOS design, or the signal processing involved in digital communications. However, there is little material dedicated to transceiver architecture and system design. Similarly, much of the existing literature looks at concepts useful for dimensioning, yet offers little practical information on how to proceed for dimensioning a line-up from scratch, and on the reasons for proceeding that way. This book redresses the balance by explaining the architecture of transceivers and their dimensioning from the perspective of a RFIC architect from within industry. It bridges the gap between digital communication systems and radiofrequency integrated circuit design, covering wireless transceiver architecture and system design from both system level and circuit designer aspects. • Covers digital communication theory, electromagnetism theory and wireless networks organization, from theories to implementation, for deriving the minimum set of constraints to be fulfilled by transceivers • Details the limitations in the physical implementation of transceivers to be considered for their dimensioning, in terms of noise, nonlinearity, and RF impairments • Presents transceiver architecture and system design in terms of transceivers budgets, transceivers architectures, and algorithms for transceivers.




Wireless Receiver Architectures and Design


Book Description

Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver‘s analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, starting from an analysis of requirements to the choice of architecture and finally to the design and algorithm development. The advantages and disadvantages of each wireless architecture and the suitability to a standard are given, enabling a better choice of design methodology, receiver lineup, analog block, and digital algorithm for a particular architecture. Whether you are a communications engineer working in system architecture and waveform design, an RF engineer working on noise and linearity budget and line-up analysis, a DSP engineer working on algorithm development, or an analog or digital design engineer designing circuits for wireless transceivers, this book is your one-stop reference and guide to designing low-cost low-power multi-mode multi-standard receivers. The material in this book is organized and presented to lead you from applied theory to practical design with plenty of examples and case studies drawn from modern wireless standards. Provides a complete description of receiver architectures together with their pros and cons, enabling a better choice of design methodology Covers the design trade-offs and algorithms between the analog front end and the digital modem – enabling an end-to-end design approach Addresses multi-mode multi-standard low-cost, low-power radio design – critical for producing the applications for Smart phones and portable internet devices




Wireless Transceiver Architecture


Book Description

A fully comprehensive reference combining digital communications and RFIC (Radio Frequency Integrated Circuits) in one complete volume There are many books which focus on the physical implementation of the RF/analog part of transceivers, such as the CMOS design, or the signal processing involved in digital communications. However, there is little material dedicated to transceiver architecture and system design. Similarly, much of the existing literature looks at concepts useful for dimensioning, yet offers little practical information on how to proceed for dimensioning a line-up from scratch, and on the reasons for proceeding that way. This book redresses the balance by explaining the architecture of transceivers and their dimensioning from the perspective of a RFIC architect from within industry. It bridges the gap between digital communication systems and radiofrequency integrated circuit design, covering wireless transceiver architecture and system design from both system level and circuit designer aspects. • Covers digital communication theory, electromagnetism theory and wireless networks organization, from theories to implementation, for deriving the minimum set of constraints to be fulfilled by transceivers • Details the limitations in the physical implementation of transceivers to be considered for their dimensioning, in terms of noise, nonlinearity, and RF impairments • Presents transceiver architecture and system design in terms of transceivers budgets, transceivers architectures, and algorithms for transceivers




Modeling and Simulation for RF System Design


Book Description

Modern telecommunication systems are highly complex from an algorithmic point of view. The complexity continues to increase due to advanced modulation schemes, multiple protocols and standards, as well as additional functionality such as personal organizers or navigation aids. To have short and reliable design cycles, efficient verification methods and tools are necessary. Modeling and simulation need to accompany the design steps from the specification to the overall system verification in order to bridge the gaps between system specification, system simulation, and circuit level simulation. Very high carrier frequencies together with long observation periods result in extremely large computation times and requires, therefore, specialized modeling methods and simulation tools on all design levels. The focus of Modeling and Simulation for RF System Design lies on RF specific modeling and simulation methods and the consideration of system and circuit level descriptions. It contains application-oriented training material for RF designers which combines the presentation of a mixed-signal design flow, an introduction into the powerful standardized hardware description languages VHDL-AMS and Verilog-A, and the application of commercially available simulators. Modeling and Simulation for RF System Design is addressed to graduate students and industrial professionals who are engaged in communication system design and want to gain insight into the system structure by own simulation experiences. The authors are experts in design, modeling and simulation of communication systems engaged at the Nokia Research Center (Bochum, Germany) and the Fraunhofer Institute for Integrated Circuits, Branch Lab Design Automation (Dresden, Germany).




Reconfigurable Transceiver Architecture for Multiband RF-Frontends


Book Description

This book investigates and discusses the hardware design and implementation to achieve smart air interfaces with a reduced number of Radio Frequency (RF) transmitter and receiver chains, or even with a single reconfigurable RF-Frontend in the user terminal. Various hardware challenges are identified and addressed to enable the implementation of autonomous reconfigurable RF-Frontend architectures. Such challenges are (i) the conception of a transceiver with wide tuning range of at least up to 6 GHz, (ii) the system integration of reconfigurable technologies targeting current compact devices that demand voltages up to 100 V for adaptive controlling and (iii) the realization of a multiband and multistandard antenna module employing agile components to provide flexible frequency coverage. A solid design of a reconfigurable frontend is proposed from the RF part to the digital baseband. The system integration of different components in the reconfigurable RF-Frontend of a portable-oriented device architecture is demonstrated.




Low-Level Radio Frequency Systems


Book Description

This book begins with an overview of the RF control concepts and strategies. It then introduces RF system models for optimizing the system parameters to satisfy beam requirements and for controller design. In addition to systematically discussing the RF field control algorithms, it presents typical architecture and algorithms for RF signal detection and actuation. Further, the book addresses the analysis of the noise and nonlinearity in LLRF systems to provide a better understanding of the performance of the RF control system and to specify the performance requirements for different parts of the RF system. Today, accelerators require increased RF stability and more complex operation scenarios, such as providing beam for different beam lines with various parameters, and as a result LLRF systems are becoming more critical and complex. This means that LLRF system developers need have extensive knowledge of the entire accelerator complex and a wide range of other areas, including RF and digital signal processing, noise analysis, accelerator physics and systems engineering. Providing a comprehensive introduction to the basic theories, algorithms and technologies, this book enables LLRF system developers to systematically gain the knowledge required to specify, design and implement LLRF systems and integrate them with beam acceleration. It is intended for graduate students, professional engineers and researchers in accelerator physics.