Radiographic Imaging and Exposure


Book Description

This text provides thorough, practical coverage of fundamental principles of imaging, designed to ensure that readers grasp the information they need to produce high-quality images in the clinical setting. Features such as Practical Tips, Important Relationships, and Mathematical Solutions are presented throughout the text as appropriate and listed in the appendixes for quick reference. Additional features that set the book apart include more coverage of computed radiography and film processing, and unique film critique sections in relevant chapters. Radiographic Imaging and Exposure, 2nd Edition provides a superior presentation of imaging and exposure. Instructor resources are available; please contact your Elsevier sales representative for details.




Radiographic Image Analysis


Book Description

This comprehensive guide shows how to reduce the need for repeat radiographs. It teaches how to carefully evaluate an image, how to identify the improper positioning or technique that caused a poor image, and how to correct the problem. This text equips radiographers with the critical thinking skills needed to anticipate and adjust for positioning and technique challenges before a radiograph is taken, so they can produce the best possible diagnostic quality radiographs. Provides a complete guide to evaluating radiographs and troubleshooting positioning and technique errors, increasing the likelihood of getting a good image on the first try. Offers step-by-step descriptions of all evaluation criteria for every projection along with explanations of how to reposition or adjust technique to produce an acceptable image. Familiarizes technologists with what can go wrong, so they can avoid retakes and reduce radiation exposure for patients and themselves. Provides numerous critique images for evaluation, so that readers can study poor images and understand what factors contributed to their production and what adjustments need to be made. Combines coverage of both positioning and technique errors, as these are likely to occur together in the clinical environment. Student workbook available for separate purchase for more practice with critique of radiographs. Provides Evolve website with a course management platform for instructors who want to post course materials online. Expanded coverage to include technique and positioning adjustments required by computed radiography. Pediatric radiography, covering radiation protection and special problems of obtaining high-quality images of pediatric patients. Evaluation criteria related to technique factors, which historically account for 60%-70% of retakes. New chapter on evaluation of images of the gastrointestinal system. Pitfalls of trauma and mobile imaging to encourage quick thinking and problem-solving in trauma situations. Improved page design and formatting to call attention to most important content.




Radiographic Imaging


Book Description

The textbook covers all aspects of imaging technology, including the use of computers and lasers and the more traditional imaging techniques. The book adopts a practical approach, explaining tests and looking at the application of techniques, and deals with a complex topic in simple and direct language.




Radiological Imaging


Book Description

Radiological Imaging: The Theory of Image Formation, Detection, and Processing is intended to prepare the student to do research in radiological imaging, to teach general image science within a radiographic context, and to help the student gain fluency with the essential analytical tools of linear systems theory and the theory of stochastic processes that are applicable to any imaging system. The book contains chapters devoted to the discussion of linear systems, Poisson processes, analysis of radiographic systems, radiographic image detectors, and the various aspects of three-dimensional or tomographic imaging. Computed tomography, psychophysics, and scattered radiation and its effect on image are also elucidated. Radiology technicians will find the book very invaluable.




Radiographic Imaging


Book Description

Describes the principles for producing quality radiographs. For use by beginning radiography students.




Principles of Radiographic Imaging (Book Only)


Book Description

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.




Essentials of Radiographic Physics and Imaging


Book Description

Written by radiographers for radiographers, Essentials of Radiographic Physics and Imaging, 2nd Edition follows the ASRT recommended curriculum and focuses on what the radiographer needs to understand to safely and competently perform radiographic examinations. This comprehensive radiologic physics and imaging text links the two subjects together so that you understand how they relate to each other - and to clinical practice. Prepare for success on the ARRT exam and the job with just the right amount of information on radiation production and characteristics, imaging equipment, film screen image acquisition and processing, digital image acquisition and display, image analysis, and the basic principles of computed tomography. 345 photos and line drawings encourage you to visualize important concepts. Strong pedagogy, including chapter objectives, key terms, outlines, bulleted chapter summaries, and specialty boxes, help you organize information and focus on what is most important in each chapter. Make the Physics Connection and Make the Imaging Connection boxes link physics and imaging concepts so you fully appreciate the importance of both subjects. Educator resources on Evolve, including lesson plans, an image collection, PowerPoint presentations, and a test bank, provide additional resources for instructors to teach the topics presented in the text. Theory to Practice boxes succinctly explain the application of concepts and describe how to use the information in clinical practice. Critical Concept boxes further explain and emphasize key points in the chapters. Math Application boxes use examples to show how mathematical concepts and formulas are applied in the clinical setting. An emphasis on the practical information highlights just what you need to know to ace the ARRT exam and become a competent practitioner. Numerous critique exercises teach you how to evaluate the quality of radiographic images and determine which factors produce poor images. A glossary of key terms serves as a handy reference. NEW! Updated content reflects the newest curriculum standards outlined by the ARRT and ASRT, providing you with the information you need to pass the boards. NEW! Critical Thinking Questions at the end of every chapter offer opportunity for review and greater challenge. NEW! Chapter Review Questions at the end of every chapter allow you to evaluate how well you have mastered the material in each chapter. NEW! Increased coverage of radiation protection principles helps you understand the ethical obligations to minimize radiation dosages, shielding, time and distance, how to limit the field of exposure and what that does to minimize dose, and technical factors and how they represent the quantity and quality of radiation. NEW! Conversion examples and sample math problems give you the practice needed to understand complex concepts. NEW! More images highlighting key concepts help you visualize the material. NEW! Expansion of digital image coverage and ample discussion on differentiating between digital and film ensures you are prepared to succeed on your exams. NEW! All-new section on manual vs. AEC use in Chapter 13 keeps you in the know. NEW and UPDATED! Expanded digital fluoroscopy section, including up-to-date information on LCD and Plasma displays, familiarizes you with the equipment you will encounter. NEW! Online chapter quizzes on Evolve feature 5-10 questions each and reinforce key concepts. NEW! PowerPoint presentations with new lecture notes on Evolve and in-depth information in the notes section of each slide make presenting quick and easy for instructors.




Chesneys' Radiographic Imaging


Book Description

Following the sucess of the previous editions of this established text, the sixth edition of Chesneys' Radiographic Imaging reflects the advances in radiography education and practice, and the changing role of the radiographer. With the needs of the student in mind, the authors have identified the growing need to reference source material wherever possible. Coverage of radiographic imaging processed has been revised and updated throughout. Digital technology has been expanded and new sections on digital picture archiving and communication systems and computed radiography have been introduced. Descriptions of dry silver imaging and receiver operating characteristics have been included. The importance of health and safety in processing areas is also covered. Chesneys' Radiographic Imaging provides a sound knowledge base for students. It will also be of interest to radiographers working in an increasingly demanding workplace with new technology of ever increasing complexity.




Radiology Fundamentals


Book Description

Radiology Fundamentals is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imaging modalities and technology, including ultrasound, computed tomography, magnetic resonance imaging, and nuclear medicine. The main scope of the book is to present concise chapters organized by anatomic region and radiology sub-specialty that highlight the radiologist’s role in diagnosing and treating common diseases, disorders, and conditions. Highly illustrated with images and diagrams, each chapter in Radiology Fundamentals begins with learning objectives to aid readers in recognizing important points and connecting the basic radiology concepts that run throughout the text. It is the editors’ hope that this valuable, up-to-date resource will foster and further stimulate self-directed radiology learning—the process at the heart of medical education.




The Essential Physics of Medical Imaging


Book Description

Widely regarded as the cornerstone text in the field, the successful series of editions continues to follow the tradition of a clear and comprehensive presentation of the physical principles and operational aspects of medical imaging. The Essential Physics of Medical Imaging, 4th Edition, is a coherent and thorough compendium of the fundamental principles of the physics, radiation protection, and radiation biology that underlie the practice and profession of medical imaging. Distinguished scientists and educators from the University of California, Davis, provide up-to-date, readable information on the production, characteristics, and interactions of non-ionizing and ionizing radiation, magnetic fields and ultrasound used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography, magnetic resonance, ultrasound, and nuclear medicine. This vibrant, full-color text is enhanced by more than 1,000 images, charts, and graphs, including hundreds of new illustrations. This text is a must-have resource for medical imaging professionals, radiology residents who are preparing for Core Exams, and teachers and students in medical physics and biomedical engineering.