Random-Set Theory and Wireless Communications


Book Description

Random-Set Theory and Wireless Communications is an important and comprehensive survey of how to use Random Set Theory in the design of future wireless communication systems.




Random Matrix Methods for Wireless Communications


Book Description

Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.




Wireless Communications


Book Description

A comprehensive introduction to the basic principles, design techniques and analytical tools of wireless communications.




Game Theory for Wireless Engineers


Book Description

The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.




Game Theory for Wireless Communications and Networking


Book Description

Used to explain complicated economic behavior for decades, game theory is quickly becoming a tool of choice for those serious about optimizing next generation wireless systems. Illustrating how game theory can effectively address a wide range of issues that until now remained unresolved, Game Theory for Wireless Communications and Networking provides a systematic introduction to the application of this powerful and dynamic tool. This comprehensive technical guide explains game theory basics, architectures, protocols, security, models, open research issues, and cutting-edge advances and applications. It describes how to employ game theory in infrastructure-based wireless networks and multihop networks to reduce power consumption—while improving system capacity, decreasing packet loss, and enhancing network resilience. Providing for complete cross-referencing, the text is organized into four parts: Fundamentals—introduces the fundamental issues and solutions in applying different games in different wireless domains, including wireless sensor networks, vehicular networks, and OFDM-based wireless systems Power Control Games—considers issues and solutions in power control games Economic Approaches—reviews applications of different economic approaches, including bargaining and auction-based approaches Resource Management—explores how to use the game theoretic approach to address radio resource management issues The book explains how to apply the game theoretic model to address specific issues, including resource allocation, congestion control, attacks, routing, energy management, packet forwarding, and MAC. Facilitating quick and easy reference to related optimization and algorithm methodologies, it supplies you with the background and tools required to use game theory to drive the improvement and development of next generation wireless systems.




Dimensions of Uncertainty in Communication Engineering


Book Description

Dimensions of Uncertainty in Communication Engineering is a comprehensive and self-contained introduction to the problems of nonaleatory uncertainty and the mathematical tools needed to solve them. The book gathers together tools derived from statistics, information theory, moment theory, interval analysis and probability boxes, dependence bounds, nonadditive measures, and Dempster–Shafer theory. While the book is mainly devoted to communication engineering, the techniques described are also of interest to other application areas, and commonalities to these are often alluded to through a number of references to books and research papers. This is an ideal supplementary book for courses in wireless communications, providing techniques for addressing epistemic uncertainty, as well as an important resource for researchers and industry engineers. Students and researchers in other fields such as statistics, financial mathematics, and transport theory will gain an overview and understanding on these methods relevant to their field. - Uniquely brings together a variety of tools derived from statistics, information theory, moment theory, interval analysis and probability boxes, dependence bounds, nonadditive measures, and Dempster—Shafer theory - Focuses on the essentials of various, wide-ranging methods with references to journal articles where more detail can be found if required - Includes MIMO-related results throughout




The Mathematical Theory of Communication


Book Description

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.




Random Wireless Networks


Book Description

This book discusses the theoretical limits of information transfer in random wireless networks or ad hoc networks, where nodes are distributed uniformly in space and there is no centralised control. It provides a detailed analysis of the two relevant notions of capacity for random wireless networks – transmission capacity and throughput capacity. The book starts with the transmission capacity framework that is first presented for the single-hop model and later extended to the multi-hop model with retransmissions. Reusing some of the tools developed for analysis of transmission capacity, a few key long-standing questions about the performance analysis of cellular networks are also provided for the benefit of students. The discussion goes further into the concept of hierarchical co-operation that allows throughput capacity to scale linearly with the number of nodes. The author finally discusses the concept of hierarchical co-operation that allows throughput capacity to scale linearly with the number of nodes.




Fundamentals of Wireless Communication


Book Description

This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.




Wireless Communications


Book Description

Understand the mechanics of wireless communication Wireless Communications: Principles, Theory and Methodology offers a detailed introduction to the technology. Comprehensive and well-rounded coverage includes signaling, transmission, and detection, including the mathematical and physics principles that underlie the technology's mechanics. Problems with modern wireless communication are discussed in the context of applied skills, and the various approaches to solving these issues offer students the opportunity to test their understanding in a practical manner. With in-depth explanations and a practical approach to complex material, this book provides students with a clear understanding of wireless communication technology.