Random Sets in Econometrics


Book Description

This is the first full-length study of how the theory of random sets can be applied in econometrics.




Theory of Random Sets


Book Description

This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.




Level Sets and Extrema of Random Processes and Fields


Book Description

A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.




Econometrics of Risk


Book Description

This edited book contains several state-of-the-art papers devoted to econometrics of risk. Some papers provide theoretical analysis of the corresponding mathematical, statistical, computational, and economical models. Other papers describe applications of the novel risk-related econometric techniques to real-life economic situations. The book presents new methods developed just recently, in particular, methods using non-Gaussian heavy-tailed distributions, methods using non-Gaussian copulas to properly take into account dependence between different quantities, methods taking into account imprecise ("fuzzy") expert knowledge, and many other innovative techniques. This versatile volume helps practitioners to learn how to apply new techniques of econometrics of risk, and researchers to further improve the existing models and to come up with new ideas on how to best take into account economic risks.




Financial Econometrics: Bayesian Analysis, Quantum Uncertainty, and Related Topics


Book Description

This book overviews latest ideas and developments in financial econometrics, with an emphasis on how to best use prior knowledge (e.g., Bayesian way) and how to best use successful data processing techniques from other application areas (e.g., from quantum physics). The book also covers applications to economy-related phenomena ranging from traditionally analyzed phenomena such as manufacturing, food industry, and taxes, to newer-to-analyze phenomena such as cryptocurrencies, influencer marketing, COVID-19 pandemic, financial fraud detection, corruption, and shadow economy. This book will inspire practitioners to learn how to apply state-of-the-art Bayesian, quantum, and related techniques to economic and financial problems and inspire researchers to further improve the existing techniques and come up with new techniques for studying economic and financial phenomena. The book will also be of interest to students interested in latest ideas and results.




Handbook of Econometrics


Book Description

Handbook of Econometrics, Volume 7A, examines recent advances in foundational issues and "hot" topics within econometrics, such as inference for moment inequalities and estimation of high dimensional models. With its world-class editors and contributors, it succeeds in unifying leading studies of economic models, mathematical statistics and economic data. Our flourishing ability to address empirical problems in economics by using economic theory and statistical methods has driven the field of econometrics to unimaginable places. By designing methods of inference from data based on models of human choice behavior and social interactions, econometricians have created new subfields now sufficiently mature to require sophisticated literature summaries. - Presents a broader and more comprehensive view of this expanding field than any other handbook - Emphasizes the connection between econometrics and economics - Highlights current topics for which no good summaries exist




Modeling Dependence in Econometrics


Book Description

In economics, many quantities are related to each other. Such economic relations are often much more complex than relations in science and engineering, where some quantities are independence and the relation between others can be well approximated by linear functions. As a result of this complexity, when we apply traditional statistical techniques - developed for science and engineering - to process economic data, the inadequate treatment of dependence leads to misleading models and erroneous predictions. Some economists even blamed such inadequate treatment of dependence for the 2008 financial crisis. To make economic models more adequate, we need more accurate techniques for describing dependence. Such techniques are currently being developed. This book contains description of state-of-the-art techniques for modeling dependence and economic applications of these techniques. Most of these research developments are centered around the notion of a copula - a general way of describing dependence in probability theory and statistics. To be even more adequate, many papers go beyond traditional copula techniques and take into account, e.g., the dynamical (changing) character of the dependence in economics.




Prediction and Causality in Econometrics and Related Topics


Book Description

This book provides the ultimate goal of economic studies to predict how the economy develops—and what will happen if we implement different policies. To be able to do that, we need to have a good understanding of what causes what in economics. Prediction and causality in economics are the main topics of this book's chapters; they use both more traditional and more innovative techniques—including quantum ideas -- to make predictions about the world economy (international trade, exchange rates), about a country's economy (gross domestic product, stock index, inflation rate), and about individual enterprises, banks, and micro-finance institutions: their future performance (including the risk of bankruptcy), their stock prices, and their liquidity. Several papers study how COVID-19 has influenced the world economy. This book helps practitioners and researchers to learn more about prediction and causality in economics -- and to further develop this important research direction.




Theory of Random Sets


Book Description

This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine




Applied Econometrics with R


Book Description

R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.