Raoul Bott: Collected Papers


Book Description

This book is the fifth and final volume of Raoul Bott’s Collected Papers. It collects all of Bott’s published articles since 1991 as well as some articles published earlier but missing in the earlier volumes. The volume also contains interviews with Raoul Bott, several of his previously unpublished speeches, commentaries by his collaborators such as Alberto Cattaneo and Jonathan Weitsman on their joint articles with Bott, Michael Atiyah’s obituary of Raoul Bott, Loring Tu’s authorized biography of Raoul Bott, and reminiscences of Raoul Bott by his friends, students, colleagues, and collaborators, among them Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring Tu. The mathematical articles, many inspired by physics, encompass stable vector bundles, knot and manifold invariants, equivariant cohomology, and loop spaces. The nonmathematical contributions give a sense of Bott’s approach to mathematics, style, personality, zest for life, and humanity. In one of the articles, from the vantage point of his later years, Raoul Bott gives a tour-de-force historical account of one of his greatest achievements, the Bott periodicity theorem. A large number of the articles originally appeared in hard-to-find conference proceedings or journals. This volume makes them all easily accessible. It also features a collection of photographs giving a panoramic view of Raoul Bott's life and his interaction with other mathematicians.




Raoul Bott: Collected Papers


Book Description

This book is the fifth and final volume of Raoul Bott’s Collected Papers. It collects all of Bott’s published articles since 1991 as well as some articles published earlier but missing in the earlier volumes. The volume also contains interviews with Raoul Bott, several of his previously unpublished speeches, commentaries by his collaborators such as Alberto Cattaneo and Jonathan Weitsman on their joint articles with Bott, Michael Atiyah’s obituary of Raoul Bott, Loring Tu’s authorized biography of Raoul Bott, and reminiscences of Raoul Bott by his friends, students, colleagues, and collaborators, among them Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring Tu. The mathematical articles, many inspired by physics, encompass stable vector bundles, knot and manifold invariants, equivariant cohomology, and loop spaces. The nonmathematical contributions give a sense of Bott’s approach to mathematics, style, personality, zest for life, and humanity. In one of the articles, from the vantage point of his later years, Raoul Bott gives a tour-de-force historical account of one of his greatest achievements, the Bott periodicity theorem. A large number of the articles originally appeared in hard-to-find conference proceedings or journals. This volume makes them all easily accessible. It also features a collection of photographs giving a panoramic view of Raoul Bott's life and his interaction with other mathematicians.




Raoul Bott: Collected Papers


Book Description

The Collected Papers of Raoul Bott are contained in five volumes, with each volume covering a different subject and each representing approximately a decade of Bott's work. The volumes are: Volume 1: Topology and Lie Groups (1950's) Volume 2: Differential Operators (1960's) Volume 3: Foliations (1970's) Volume 4: Mathematics Related to Physics (1980's) Volume 5: Completive Articles and Additional Biographic Material (1990's)




Raoul Bott


Book Description




An Introduction to Manifolds


Book Description

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.




The Collected Papers of Stephen Smale


Book Description

This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.




Differential Forms in Algebraic Topology


Book Description

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.




The Mathematical Heritage of Hermann Weyl


Book Description

Hermann Weyl was one of the most influential mathematicians of the twentieth century. Viewing mathematics as an organic whole rather than a collection of separate subjects, Weyl made profound contributions to a wide range of areas, including analysis, geometry, number theory, Lie groups, and mathematical physics, as well as the philosophy of science and of mathematics. The topics he chose to study, the lines of thought he initiated, and his general perspective on mathematics have proved remarkably fruitful and have formed the basis for some of the best of modern mathematical research. This volume contains the proceedings of the AMS Symposium on the Mathematical Heritage of Hermann Weyl, held in May 1987 at Duke University. In addition to honoring Weyl's great accomplishments in mathematics, the symposium also sought to stimulate the younger generation of mathematicians by highlighting the cohesive nature of modern mathematics as seen from Weyl's ideas. The symposium assembled a brilliant array of speakers and covered a wide range of topics. All of the papers are expository and will appeal to a broad audience of mathematicians, theoretical physicists, and other scientists.







A History in Sum


Book Description

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard's mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics--in algebraic geometry, complex analysis, and other esoteric subdisciplines that are rarely written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics--an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce's successors transformed the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Influential figures soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.