Rapidly Evolving Genes and Genetic Systems


Book Description

Ever since the pioneering work of Darwin and Wallace, evolutionary biologists have attempted to understand the evolutionary dynamics of genetic systems. A range of theories on evolutionary ratesfrom static to gradual to punctuated to quantumhave been developed, primarily by comparing morphological changes over geological timescales as described in the fossil record. Recent studies, however, are beginning to change the way that we view evolutionary patterns and processes. New paleontological, experimental, molecular, and genomic investigations are providing a tremendous amount of novel data and fresh perspectives, offering valuable insights on the rates of evolutionary change, particularly in fast-evolving genetic systems. Rapidly Evolving Genes and Genetic Systems captures these recent exciting developments across a broad range of morphological, molecular, cellular, developmental, and genetic investigations in both natural and experimental populations over a diversity of life forms. The book provides a fascinating series of case studies that exemplify rapid evolution, and showcases the diversity of rapidly evolving genes and genetic systems, emphasizing the extremely important roles that they play in adaptation, speciation, and the generation and maintenance of a diversity of biological traits and properties. This exciting collection showcases the latest research of more than 50 eminent evolutionary biologists. It will be suitable for senior undergraduate students, graduate students, researchers, and for all those interested in the study of evolution.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Robustness and Evolvability in Living Systems


Book Description

All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide. Robustness and Evolvability in Living Systems tackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.




Developmental Plasticity and Evolution


Book Description

The first comprehensive synthesis on development and evolution: it applies to all aspects of development, at all levels of organization and in all organisms, taking advantage of modern findings on behavior, genetics, endocrinology, molecular biology, evolutionary theory and phylogenetics to show the connections between developmental mechanisms and evolutionary change. This book solves key problems that have impeded a definitive synthesis in the past. It uses new concepts and specific examples to show how to relate environmentally sensitive development to the genetic theory of adaptive evolution and to explain major patterns of change. In this book development includes not only embryology and the ontogeny of morphology, sometimes portrayed inadequately as governed by "regulatory genes," but also behavioral development and physiological adaptation, where plasticity is mediated by genetically complex mechanisms like hormones and learning. The book shows how the universal qualities of phenotypes--modular organization and plasticity--facilitate both integration and change. Here you will learn why it is wrong to describe organisms as genetically programmed; why environmental induction is likely to be more important in evolution than random mutation; and why it is crucial to consider both selection and developmental mechanism in explanations of adaptive evolution. This book satisfies the need for a truly general book on development, plasticity and evolution that applies to living organisms in all of their life stages and environments. Using an immense compendium of examples on many kinds of organisms, from viruses and bacteria to higher plants and animals, it shows how the phenotype is reorganized during evolution to produce novelties, and how alternative phenotypes occupy a pivotal role as a phase of evolution that fosters diversification and speeds change. The arguments of this book call for a new view of the major themes of evolutionary biology, as shown in chapters on gradualism, homology, environmental induction, speciation, radiation, macroevolution, punctuation, and the maintenance of sex. No other treatment of development and evolution since Darwin's offers such a comprehensive and critical discussion of the relevant issues. Developmental Plasticity and Evolution is designed for biologists interested in the development and evolution of behavior, life-history patterns, ecology, physiology, morphology and speciation. It will also appeal to evolutionary paleontologists, anthropologists, psychologists, and teachers of general biology.







Abstracts of Publications


Book Description

Summarizes the publications that have resulted from the activities that have been sponsored in State and local governments and in technologically-oriented institutions around the country in the Intergovernmental Science Program.




Origin and Evolution of Viruses


Book Description

New viral diseases are emerging continuously. Viruses adapt to new environments at astounding rates. Genetic variability of viruses jeopardizes vaccine efficacy. For many viruses mutants resistant to antiviral agents or host immune responses arise readily, for example, with HIV and influenza. These variations are all of utmost importance for human and animal health as they have prevented us from controlling these epidemic pathogens. This book focuses on the mechanisms that viruses use to evolve, survive and cause disease in their hosts. Covering human, animal, plant and bacterial viruses, it provides both the basic foundations for the evolutionary dynamics of viruses and specific examples of emerging diseases. - NEW - methods to establish relationships among viruses and the mechanisms that affect virus evolution - UNIQUE - combines theoretical concepts in evolution with detailed analyses of the evolution of important virus groups - SPECIFIC - Bacterial, plant, animal and human viruses are compared regarding their interation with their hosts




Gene Drives on the Horizon


Book Description

Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.




Gene Sharing and Evolution


Book Description

In Gene Sharing and Evolution Piatigorsky explores the generality and implications of gene sharing throughout evolution and argues that most if not all proteins perform a variety of functions in the same and in different species, and that this is a fundamental necessity for evolution.




Evolution in Four Dimensions, revised edition


Book Description

A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays