Reaction Engineering Principles


Book Description

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student’s perspective. It is the culmination of the author’s more than twenty years of experience teaching chemical reaction engineering. The textbook begins by covering the basic building blocks of the subject—stoichiometry, kinetics, and thermodynamics—ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors. The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types. For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.




Fundamentals of Chemical Reaction Engineering


Book Description

Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. Each chapter contains numerous worked-out problems and real-world vignettes involving commercial applications, a feature widely praised by reviewers and teachers. 2003 edition.




Reaction Engineering for Pollution Prevention


Book Description

This book defines environmental reaction engineering principles, including reactor design, for the development of processes that provide an environmental benefit. With regard to pollution prevention, the focus is primarily on new reaction and reactor technologies that minimize the production of undesirable side-products (pollutants), but the use of reaction engineering as a means of treating wastes that are produced through other means is also considered.First is a section on environmentally benign combustion. The three papers discuss methods of reducing the formation of PAHs and NOx, as well as other environmentally sensitive combustion products. The next section contains a collection of contributions that involve the use of a catalyst to support the reaction. Following this is a section on the use of supercritical fluid solvents as environmentally friendly media for chemical reactions. Finally, a series of papers is presented in which novel reactor designs are utilized to obtain product yields not possible in conventional reactor systems. These include the use of reactor-absorber systems, reactive distillation, and reactive membranes. The book concludes with a chapter contributed by the editors which discusses the educational aspects of pollution prevention. It is necessary for future generations of engineers to be trained to design processes that are inherently environmentally benign. This chapter assembles resource materials for educators which will spark the creative instincts of the researchers using the materials contained within this book to develop new resources for pollution prevention education. The broad spectrum of topics included in this book indicates the diversity of this area, and the vibrant nature of the ongoing research. The possibilities of producing desirable products without the formation of waste byproducts are bounded only by the creativity of the reaction engineer.




Chemical Reaction Engineering


Book Description

Filling a longstanding gap for graduate courses in the field, Chemical Reaction Engineering: Beyond the Fundamentals covers basic concepts as well as complexities of chemical reaction engineering, including novel techniques for process intensification. The book is divided into three parts: Fundamentals Revisited, Building on Fundamentals, and Beyon




Reaction Engineering


Book Description

Reaction Engineering clearly and concisely covers the concepts and models of reaction engineering and then applies them to real-world reactor design. The book emphasizes that the foundation of reaction engineering requires the use of kinetics and transport knowledge to explain and analyze reactor behaviors. The authors use readily understandable language to cover the subject, leaving readers with a comprehensive guide on how to understand, analyze, and make decisions related to improving chemical reactions and chemical reactor design. Worked examples, and over 20 exercises at the end of each chapter, provide opportunities for readers to practice solving problems related to the content covered in the book. Seamlessly integrates chemical kinetics, reaction engineering, and reactor analysis to provide the foundation for optimizing reactions and reactor design Compares and contrasts three types of ideal reactors, then applies reaction engineering principles to real reactor design Covers advanced topics, like microreactors, reactive distillation, membrane reactors, and fuel cells, providing the reader with a broader appreciation of the applications of reaction engineering principles and methods




Reaction Engineering Principles


Book Description

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student’s perspective. It is the culmination of the author’s more than twenty years of experience teaching chemical reaction engineering. The textbook begins by covering the basic building blocks of the subject—stoichiometry, kinetics, and thermodynamics—ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors. The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types. For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.




Principles of Chemical Reactor Analysis and Design


Book Description

An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. Principles of Chemical Reactor Analysis and Design prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors.




Principles of Chemical Engineering Practice


Book Description

Enables chemical engineering students to bridge theory and practice Integrating scientific principles with practical engineering experience, this text enables readers to master the fundamentals of chemical processing and apply their knowledge of such topics as material and energy balances, transport phenomena, reactor design, and separations across a broad range of chemical industries. The author skillfully guides readers step by step through the execution of both chemical process analysis and equipment design. Principles of Chemical Engineering Practice is divided into two sections: the Macroscopic View and the Microscopic View. The Macroscopic View examines equipment design and behavior from the vantage point of inlet and outlet conditions. The Microscopic View is focused on the equipment interior resulting from conditions prevailing at the equipment boundaries. As readers progress through the text, they'll learn to master such chemical engineering operations and equipment as: Separators to divide a mixture into parts with desirable concentrations Reactors to produce chemicals with needed properties Pressure changers to create favorable equilibrium and rate conditions Temperature changers and heat exchangers to regulate and change the temperature of process streams Throughout the book, the author sets forth examples that refer to a detailed simulation of a process for the manufacture of acrylic acid that provides a unifying thread for equipment sizing in context. The manufacture of hexyl glucoside provides a thread for process design and synthesis. Presenting basic thermodynamics, Principles of Chemical Engineering Practice enables students in chemical engineering and related disciplines to master and apply the fundamentals and to proceed to more advanced studies in chemical engineering.




Principles of Chemical Engineering Processes


Book Description

Principles of Chemical Engineering Processes: Material and Energy Balances introduces the basic principles and calculation techniques used in the field of chemical engineering, providing a solid understanding of the fundamentals of the application of material and energy balances. Packed with illustrative examples and case studies, this book: Discusses problems in material and energy balances related to chemical reactors Explains the concepts of dimensions, units, psychrometry, steam properties, and conservation of mass and energy Demonstrates how MATLAB® and Simulink® can be used to solve complicated problems of material and energy balances Shows how to solve steady-state and transient mass and energy balance problems involving multiple-unit processes and recycle, bypass, and purge streams Develops quantitative problem-solving skills, specifically the ability to think quantitatively (including numbers and units), the ability to translate words into diagrams and mathematical expressions, the ability to use common sense to interpret vague and ambiguous language in problem statements, and the ability to make judicious use of approximations and reasonable assumptions to simplify problems This Second Edition has been updated based upon feedback from professors and students. It features a new chapter related to single- and multiphase systems and contains additional solved examples and homework problems. Educational software, downloadable exercises, and a solutions manual are available with qualifying course adoption.




Bioreaction Engineering Principles


Book Description

This is the second edition of the text "Bioreaction Engineering Principles" by Jens Nielsen and John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer). Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition and asked us to make a second, revised edition we happily accepted. A text on bioreactions written in the early 1990's will not reflect the enormous development of experimental as well as theoretical aspects of cellular reactions during the past decade. In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has had 10 more years of job training in biotechnology, and the younger author (IN) has now received international recognition for his work with the hottest topics of "modem" biotechnology. Furthermore we are happy to have induced Gunnar Liden, professor of chemical reaction engineering at our sister university in Lund, Sweden to join us as co-author of the second edition. His contribution, especially on the chemical engineering aspects of "real" bioreactors has been of the greatest value. Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank professor Martin Hjortso from LSU for his substantial help with this chapter.