Reaction Kinetics and Reactor Design, Second Edition


Book Description

This text combines a description of the origin and use of fundamental chemical kinetics through an assessment of realistic reactor problems with an expanded discussion of kinetics and its relation to chemical thermodynamics. It provides exercises, open-ended situations drawing on creative thinking, and worked-out examples. A solutions manual is also available to instructors.




An Introduction to Chemical Engineering Kinetics and Reactor Design


Book Description

A comprehensive introduction to chemical engineering kinetics Providing an introduction to chemical engineering kinetics and describing the empirical approaches that have successfully helped engineers describe reacting systems, An Introduction to Chemical Engineering Kinetics & Reactor Design is an excellent resource for students of chemical engineering. Truly introductory in nature, the text emphasizes those aspects of chemical kinetics and material and energy balances that form the broad foundation for understanding reactor design. For those seeking an introduction to the subject, the book provides a firm and lasting foundation for continuing study and practice.




Bioprocess Engineering


Book Description

Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses




Modeling of Chemical Kinetics and Reactor Design


Book Description

This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.




Chemical Reactor Analysis and Design


Book Description

This is the Second Edition of the standard text on chemical reaction engineering, beginning with basic definitions and fundamental principles and continuing all the way to practical applications, emphasizing real-world aspects of industrial practice. The two main sections cover applied or engineering kinetics, reactor analysis and design. Includes updated coverage of computer modeling methods and many new worked examples. Most of the examples use real kinetic data from processes of industrial importance.







Chemical Reaction Engineering and Reactor Technology, Second Edition


Book Description

The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Thoroughly revised and updated, this much-anticipated Second Edition addresses the rapid academic and industrial development of chemical reaction engineering. Offering a systematic development of the chemical reaction engineering concept, this volume explores: essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors homogeneous and heterogeneous reactors reactor optimization aspects residence time distributions and non-ideal flow conditions in industrial reactors solutions of algebraic and ordinary differential equation systems gas- and liquid-phase diffusion coefficients and gas-film coefficients correlations for gas-liquid systems solubilities of gases in liquids guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.




Chemical Reaction Engineering and Reactor Technology


Book Description

The role of the chemical reactor is crucial for the industrial conversion of raw materials into products and numerous factors must be considered when selecting an appropriate and efficient chemical reactor. Chemical Reaction Engineering and Reactor Technology defines the qualitative aspects that affect the selection of an industrial chemical reactor and couples various reactor models to case-specific kinetic expressions for chemical processes. Offering a systematic development of the chemical reaction engineering concept, this volume explores: Essential stoichiometric, kinetic, and thermodynamic terms needed in the analysis of chemical reactors Homogeneous and heterogeneous reactors Residence time distributions and non-ideal flow conditions in industrial reactors Solutions of algebraic and ordinary differential equation systems Gas- and liquid-phase diffusion coefficients and gas-film coefficients Correlations for gas-liquid systems Solubilities of gases in liquids Guidelines for laboratory reactors and the estimation of kinetic parameters The authors pay special attention to the exact formulations and derivations of mass energy balances and their numerical solutions. Richly illustrated and containing exercises and solutions covering a number of processes, from oil refining to the development of specialty and fine chemicals, the text provides a clear understanding of chemical reactor analysis and design.




Chemical Reactor Design


Book Description

Featuring case studies and worked examples that illustrate key concepts in the text, this book contains guidelines for scaleup of laboratory and pilot plant results, methods to derive the correct reaction order, activation energy, or kinetic model from laboratory tests, and theories, correlations, and practical examples for 2- and 3-phase reaction




Principles of Chemical Reactor Analysis and Design


Book Description

An innovative approach that helps students move from the classroom to professional practice This text offers a comprehensive, unified methodology to analyze and design chemical reactors, using a reaction-based design formulation rather than the common species-based design formulation. The book's acclaimed approach addresses the weaknesses of current pedagogy by giving readers the knowledge and tools needed to address the technical challenges they will face in practice. Principles of Chemical Reactor Analysis and Design prepares readers to design and operate real chemical reactors and to troubleshoot any technical problems that may arise. The text's unified methodology is applicable to both single and multiple chemical reactions, to all reactor configurations, and to all forms of rate expression. This text also . . . Describes reactor operations in terms of dimensionless design equations, generating dimensionless operating curves that depict the progress of individual chemical reactions, the composition of species, and the temperature. Combines all parameters that affect heat transfer into a single dimensionless number that can be estimated a priori. Accounts for all variations in the heat capacity of the reacting fluid. Develops a complete framework for economic-based optimization of reactor operations. Problems at the end of each chapter are categorized by their level of difficulty from one to four, giving readers the opportunity to test and develop their skills. Graduate and advanced undergraduate chemical engineering students will find that this text's unified approach better prepares them for professional practice by teaching them the actual skills needed to design and analyze chemical reactors.