Real-time Digital Signal Processing for Software-defined Optical Transmitters and Receivers


Book Description

A software-defined optical Tx is designed and demonstrated generating signals with various formats and pulse-shapes in real-time. Special pulse-shapes such as OFDM or Nyquist signaling were utilized resulting in a highly efficient usage of the available fiber channel bandwidth. This was achieved by parallel data processing with high-end FPGAs. Furthermore, highly efficient Rx algorithms for carrier and timing recovery as well as for polarization demultiplexing were developed and investigated.




Real-time Digital Signal Processing for Software-defined Optical Transmitters and Receivers


Book Description

A software-defined optical Tx is designed and demonstrated generating signals with various formats and pulse-shapes in real-time. Special pulse-shapes such as OFDM or Nyquist signaling were utilized resulting in a highly efficient usage of the available fiber channel bandwidth. This was achieved by parallel data processing with high-end FPGAs. Furthermore, highly efficient Rx algorithms for carrier and timing recovery as well as for polarization demultiplexing were developed and investigated. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Silicon-organic hybrid (SOH) electro-optic modulators for high-speed and power-efficient communications


Book Description

Silicon-organic hybrid (SOH) modulators add a highly efficient nonlinear organic electro-optic cladding material to the silicon photonic platform, thereby enabling efficient electro-optic modulation. In this book, the application potential of SOH modulators is investigated. Proof-of-principle experiments show that they can be used for high-speed communications at symbol rates up to 100 GBd and operated directly from a field-programmable gate array (FPGA) without additional driver amplifiers.




All-Optical Signal Processing


Book Description

This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and fully transparent all-optical networks. The book is written by leaders in the field.




Interleaving Concepts for Digital-to-Analog Converters


Book Description

Modern complementary metal oxide semiconductor (CMOS) digital-to-analog converters (DACs) are limited in their bandwidth due to technological constraints. These limitations can be overcome by parallel DAC architectures, which are called interleaving concepts. Christian Schmidt analyzes the limitations and the potential of two innovative DAC interleaving concepts to provide the basis for a practical implementation: the analog multiplexing DAC (AMUX-DAC) and the frequency interleaving DAC (FI-DAC). He presents analytical and discrete-time models as a theoretical foundation and develops digital signal processing (DSP) algorithms to compensate the analog impairments. Further, he quantifies the impact of various limiting parameters with numerical simulations and verifies both concepts in laboratory experiments. About the Author: Christian Schmidt works at the Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany, on innovative solutions for broadband signal generation in the field of optical communications. The studies for his dissertation were carried out at the Technische Universität Berlin and at the Fraunhofer Heinrich-Hertz-Institute, both Berlin, Germany.




Single-Laser Multi-Terabit/s Systems


Book Description

Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments.




Optical Fiber Telecommunications VIA


Book Description

One of the most challenging components of an optical coherent communication system are the integrated circuits (ICs) that process the received signals or condition the transmit signals. We discuss implementation aspects of these ICs and their main building blocks, as data converters, baseband signal processing, forward error correction, and interfacing. We highlight selected implementation details for some baseband signal processing blocks of a coherent receiver. The latest generation of coherent ICs also supports advanced forward error correction techniques based on soft decisions. We introduce circuits for encoding and decoding low-density parity-check (LDPC) codes and show how to evaluate different forward error correction schemes based on a set of recorded measurement data.




A Software-Defined GPS and Galileo Receiver


Book Description

This book explore the use of new technologies in the area of satellite navigation receivers. In order to construct a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio techniques. The presentation unfolds in a user-friendly style and goes from the basics to cutting-edge research. The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.




Silicon-organic hybrid devices for high-speed electro-optic signal processing


Book Description

Among the various elements of the silicon photonics platform, electro-optic IQ modulators play an important role. In this book, silicon-organic hybrid (SOH) integration is used to realize electro-optic IQ modulators for complex signal processing. Leveraging the high nonlinearity of organic materials, SOH IQ modulators provide low energy consumption for high-speed data transmission and frequency shifting. Furthermore, the device design is adapted for commercial foundry processes.