Real-Time Optimal Control of Autonomous Switched Systems


Book Description

This work provides a real-time algorithmic optimal control framework for autonomous switched systems. Traditional optimal control approaches for autonomous switched systems are open-loop in nature. Therefore, the switching times of the system can not be adjusted or adapted when the system parameters or the operational environments change. This work aims to close this loop, and apply adaptations to the optimal switching strategy based on new information that can only be captured on-line. One important contribution of this work is to provide the means to allow feedback (in a general sense) to the control laws (i.e. the switching times) of the switched system so that the control laws can be updated to maintain optimality of the switching-time control inputs. Furthermore, convergence analysis for the proposed algorithms are presented. The effectiveness of the real-time algorithms is demonstrated by an application in optimal formation and coverage control of a networked system. This application is implemented on a realistic simulation framework consisting of a number of Unmanned Aerial Vehicles (UAVs) that interact in a virtual 3D world.




Switched Linear Systems


Book Description

Switched linear systems have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by this book which features: nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results.




Optimal Control of Switched Systems with Application to Networked Embedded Control Systems


Book Description

This thesis addresses optimal control of discrete-time switched linear systems with application to networked embedded control systems (NECSs). Part I focuses on optimal control and scheduling of discrete-time switched linear systems. The objective is to simultaneously design a control law and a switching (scheduling) law such that a cost function is minimized. This optimization problem exhibits exponential complexity. Taming the complexity is a major challenge. Two novel methods are presented to approach this optimization problem: Receding-horizon control and scheduling relies on the receding horizon principle. The optimization problem is solved based on relaxed dynamic programming, allowing to reduce complexity by relaxing optimality within predefined bounds. The solution can be expressed as a piecewise linear (PWL) state feedback control law. Stability is addressed via an a priori stability condition based on a terminal weighting matrix and several a posteriori stability criteria based on constructing piecewise quadratic Lyapunov functions and on utilizing the cost function as a candidate Lyapunov function. Moreover, a region-reachability criterion is derived. Periodic control and scheduling relies on periodic control theory. Both offline and online scheduling are studied. The optimization problem is solved based on periodic control and exhaustive search. The online scheduling solution can again be expressed as a PWL state feedback control law. Stability is guaranteed inherently. Several methods are proposed to reduce the online complexity based on relaxation and heuristics. Part II focuses on optimal control and scheduling of NECSs. The NECS is modeled as a block-diagonal discrete-time switched linear system. Various control and scheduling codesign strategies are derived based on the methods from Part I regarding the structural properties of NECSs. The methods presented in Part I and II are finally evaluated in a case study.




Optimal Control of Switched Autonomous Systems: Theory, Algorithms, and Robotic Applications


Book Description

As control systems are becoming more and more complex, system complexity is rapidly becoming a limiting factor in the efficacy of established techniques for control systems design. To cope with the growing complexity, control architectures often have a hierarchical structure. At the base of the system pyramid lie feedback loops with simple closed-loop control laws. These are followed, at a higher level, by discrete control logics. Such hierarchical systems typically have a hybrid nature. A common approach to addressing these types of complexity consists of decomposing, in the time domain, the control task into a number of modes, i.e. control laws dedicated to carrying out a limited task. This type of control generally involves switching laws among the various modes, and its design poses a major challenge in many application domains. The primary goal of this thesis is to develop a unified framework for addressing this challenge. To this end, the contribution of this thesis is threefold: (1) An algorithmic framework for how to optimize the performance of switched autonomous systems is derived. The optimization concerns both the sequence in which different modes appear in and the duration of each mode. The optimization algorithms are presented together with detailed convergence analyses. (2) Control strategies for how to optimize switched autonomous systems operating in real time, and when the initial state of the system is unknown, are presented. (3) A control strategy for how to optimally navigate an autonomous mobile robot in real-time is presented and evaluated on a mobile robotics platform. The control strategy uses optimal switching surfaces for when to switch between different modes of operations (behaviors).




Switching in Systems and Control


Book Description

The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.







Analysis and Synthesis for Discrete-Time Switched Systems


Book Description

This book presents recent theoretical advances in the analysis and synthesis of discrete-time switched systems under the time-dependent switching scheme, including stability and disturbance attenuation performance analysis, control and filtering, asynchronous switching, finite-time analysis and synthesis, and reachable set estimation. It discusses time-scheduled technology, which can achieve a better performance and reduce conservatism compared with the traditional time-independent approach. Serving as a reference resource for researchers and engineers in the system and control community, it is also useful for graduate and undergraduate students interested in switched systems and their applications.




Stabilization and H∞ Control of Switched Dynamic Systems


Book Description

This book presents several novel constructive methodologies for global stabilization and H-infinity control in switched dynamic systems by using the systems’ structure information. The main features of these new approaches are twofold: i) Novel Lyapunov functions are constructed and new switching strategies are designed to guarantee global finite-time stabilization of the closed-loop switched dynamic systems,while ii) without posing any internal stability requirements on subsystems, the standard H-infinity control problem of the switched dynamic systems is solved by means of dwell-time switching techniques. Systematically presenting constructive methods for analyzing and synthesizing switched systems, the content is of great significance to theoretical research and practical applications involving switched systems alike. The book provides a unified framework for stability analysis, stabilization and H-infinity control of switched systems, making it a valuable resource for researchers and graduate students who want to learn about the state of the art in the analysis and synthesis of switched systems, as well as recent advances in switched linear systems. In addition, it offers a wealth of cutting-edge constructive methods and algorithm designs for researchers who work with switched dynamic systems and graduate students of control theory and control engineering.




Control Synthesis of Switched Systems


Book Description

This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on intelligent control concepts. It is a useful source of up-to-date design methods and algorithms for researchers studying switched systems and graduate students of control theory and engineering. In addition, it is a valuable reference resource for practising engineers working in switched-system control design. Readers should have a basic knowledge of linear, nonlinear and switched systems.




Software-Enabled Control


Book Description

Discusses open systems, object orientation, software agents, domain-specific languages, component architectures, as well as the dramatic IT-enabled improvements in memory, communication, and processing resources that are now available for sophisticated control algorithms to exploit. Useful for practitioners and researchers in the fields of real-time systems, aerospace engineering, embedded systems, and artificial intelligence.