Advances in Aerospace Science and Technology


Book Description

Aerospace science and technology have made remarkable progress in the last century. Although a few publications have written on this topic, most are inadequate in elucidating the various advanced technologies developed in recent years. For this reason, publishing a book in which prominent researchers elaborate and discuss their research efforts in conjunction with other efforts appears sensible. In this book, the most accurate and current materials were gathered, reviewed, and presented by an exceptional group of experts. This book presents state-of-the-art and current developments and applications in aerospace. This is a Part II continuation book of previously published edited book composed of the following:· Chapter 1: Application of High-Performance Interconnection in Aerospace Technology· Chapter 2: Knitted Structures in Aerospace Applications· Chapter 3: Carbon Nanotube-Reinforced Hierarchical Carbon Fibre Composites· Chapter 4: Influence of Aviation Fuel on Composite Materials· Chapter 5: Deterioration in Aero-Engines· Chapter 6: Important Aerodyamic Parameters in Flapping-Wing Unmanned Aerial Vehicles· Chapter 7: Visual Localisation and Mapping using Unmanned Aerial Vehicles· Chapter 8: Geospatial Mapping Using SatellitesThis book is intended for undergraduate and graduate students as well as professionals in the field of aeronautical/aerospace engineering. The book could also serve as a guide for engineers and practitioners, academicians, government agencies, and industries.




Recent Advances in the Aerospace Sciences


Book Description

This volume, published in honor of Prof. Luigi Crocco, appears when Luigi Crocco celebrates his 75th birthday of a life devoted to study, research, and teaching. The events in his life and World War II forced Luigi Crocco, as well as other Italian scientists, to look to foreign countries for the calm haven so vital to study. This notwithstanding, his scientific activity was never inter rupted, and this volume is an acknowledgment of scientists and researchers to his work and life. Prefazione Questo volume in onore del prof. ing. Luigi Crocco vede la luce quando Luigi Crocco compie i 75 anni di una vita dedicata allo studio, alia ricerca e all'insegnamento. a Le vicende della vita, ed anche della 2 guerra mondiale, hanno costretto Luigi Crocco, come altri scienziati italiani, a dover cercare in altri Paesi quella serenita necessaria per dedicarsi allo studio. Ma la sua attivita scientifica non ha avuto interruzioni e questo volume essere la testimonianza di studiosi e di ricercatori alia sua opera e alia sua vita."




Advanced Composite Materials for Aerospace Engineering


Book Description

Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. - Contains contributions from leading experts in the field - Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry - Discusses both existing commercial composite materials and those currently under research or development




Hypersonic Aerothermodynamics


Book Description

A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR




Aerospace Materials Handbook


Book Description

Whether an airplane or a space shuttle, a flying machine requires advanced materials to provide a strong, lightweight body and a powerful engine that functions at high temperature. The Aerospace Materials Handbook examines these materials, covering traditional superalloys as well as more recently developed light alloys. Capturing state-of-the-art d




Aerospace Materials and Applications


Book Description

"The present volume is focused on documenting the novel processing, fabrication, characterization, and testing approaches that are unique to aerospace materials/structures/systems"--Preface.




Aerospace Engineering: Design, Development and Applications


Book Description

Aerospace engineering is the discipline of engineering that deals with the development of aircraft and spacecraft. Aeronautical engineering and astronautical engineering are the two branches of aerospace engineering. Aeronautical engineering is concerned with the study, design and manufacturing of air flight capable machines, whereas astronautically engineering is linked to the field of rocket science. The interaction between technologies like aerodynamics, propulsion, avionics, materials science, structural analysis and manufacturing is characterised as aerospace engineering. It includes elements like radar cross section, flight test, aero acoustics, noise control, risk and reliability, solid mechanics etc. Theoretical physics is the basis of most of these elements that fall under aerospace engineering. This book unravels the recent studies in the field of aerospace engineering. Also included herein is a detailed explanation of the various concepts and applications of aerospace engineering. Through this book, we attempt to further enlighten the readers about the new concepts in this field.




Applied Mathematics in Aerospace Science and Engineering


Book Description

This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa tions, mathematical programming, optimal control, numerical methods, per turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanics, rarefied gas dynamics, and solid mechanics. The book includes 20 chapters by 23 contributors from the United States, Germany, and Italy and is intended to be an important reference work on the application of mathematics to the aerospace field. It reflects the belief of the course directors that strong interaction between mathematics and engineering is beneficial, indeed essential, to progresses in both areas.




Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries


Book Description

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.




Systems Engineering for Aerospace


Book Description

Systems Engineering for Aerospace: A Practical Approach applies insights gained from systems engineering to real-world industry problems. The book describes how to measure and manage an aircraft program from start to finish. It helps readers determine input, process and output requirements, from planning to testing. Readers will learn how to simplify design through production and acquire a lifecycle strategy using Integrated Master Plan/Schedule (IMP/IMS). The book directly addresses improved aircraft system design tools and processes which, when implemented, contribute to simpler, lower cost and safer airplanes. The book helps the reader understand how a product should be designed, identifying the customer's requirements, considering all possible components of an integrated master plan, and executing according to the plan with an integrated master schedule. The author demonstrates that systems engineering offers a means for aircraft companies to become more effective and profitable. - Describes how to measure and manage an aircraft program - Instructs on how to determine essential input, process and output requirements - Teaches how to simplify the design process, thus allowing for increased profit - Provides a lifecycle strategy using Integrated Master Plan/Schedule (IMP/IMS) - Identifies cost driver influences on people, products and processes