Recent Advances in Constructive Approximation Theory


Book Description

This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type, convergence of GBS operators.




Constructive Approximation


Book Description

In the last 30 years, Approximation Theory has undergone wonderful develop ment, with many new theories appearing in this short interval. This book has its origin in the wish to adequately describe this development, in particular, to rewrite the short 1966 book of G. G. Lorentz, "Approximation of Functions." Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The outcome has been their "Constructive Approximation" (1993), volume 303 of this series. References to this book are given as, for example rCA, p.201]. Later, M. v. Golitschek and Y. Makovoz joined Lorentz to produce the present book, as a continuation of the first. Completeness has not been our goal. In some of the theories, our exposition offers a selection of important, representative theorems, some other cases are treated more systematically. As in the first book, we treat only approximation of functions of one real variable. Thus, functions of several variables, complex approximation or interpolation are not treated, although complex variable methods appear often.




Recent Advances in Constructive Approximation Theory


Book Description

This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type convergence of GBS operators.




Constructive Approximation


Book Description

Coupled with its sequel, this book gives a connected, unified exposition of Approximation Theory for functions of one real variable. It describes spaces of functions such as Sobolev, Lipschitz, Besov rearrangement-invariant function spaces and interpolation of operators. Other topics include Weierstrauss and best approximation theorems, properties of polynomials and splines. It contains history and proofs with an emphasis on principal results.




Approximation Theory and Algorithms for Data Analysis


Book Description

This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.




Advanced Problems in Constructive Approximation


Book Description

The current form of modern approximation theory is shaped by many new de velopments which are the subject of this series of conferences. The International Meetings on Approximation Theory attempt to keep track in particular of fun damental advances in the theory of function approximation, for example by (or thogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation, splines, radial basis functions and several others. This includes both approxima tion order and error estimates, as well as constructions of function systems for approximation of functions on Euclidean spaces and spheres. It is a piece of very good fortune that at all of the IDoMAT meetings, col leagues and friends from all over Europe, and indeed some count ries outside Europe and as far away as China, New Zealand, South Africa and U.S.A. came and dis cussed mathematics at IDoMAT conference facility in Witten-Bommerholz. The conference was, as always, held in a friendly and congenial atmosphere. After each meeting, the delegat es were invited to contribute to the proceed ing's volume, the previous one being published in the same Birkhäuser series as this one. The editors were pleased about the quality of the contributions which could be solicited for the book. They are refereed and we should mention our gratitude to the referees and their work.




Methods of Approximation Theory in Complex Analysis and Mathematical Physics


Book Description

The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.




Approximation Theory and Approximation Practice, Extended Edition


Book Description

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.




Logarithmic Potentials with External Fields


Book Description

In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.




Recent Advances in Numerical Methods for Partial Differential Equations and Applications


Book Description

This book is derived from lectures presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. The topic was computational mathematics, focusing on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Compiled here are articles from six of nine speakers. Each of them is a leading researcher in the field of computational mathematics and its applications. A vast area that has been coming into its own over the past 15 years, computational mathematics has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. With the aid of powerful high performance computers, numerical simulation of physical phenomena is the only feasible method for analyzing many types of important phenomena, joining experimentation and theoretical analysis as the third method of scientific investigation. The three aspects: applications, theory, and computer implementation comprise a comprehensive overview of the topic. Leading lecturers were Mary Wheeler on applications, Jinchao Xu on theory, and David Keyes on computer implementation. Following the tradition of the Barrett Lectures, these in-depth articles and expository discussions make this book a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists.