Recent Advances in Applied Probability


Book Description

Applied probability is a broad research area that is of interest to scientists in diverse disciplines in science and technology, including: anthropology, biology, communication theory, economics, epidemiology, finance, geography, linguistics, medicine, meteorology, operations research, psychology, quality control, sociology, and statistics. Recent Advances in Applied Probability is a collection of survey articles that bring together the work of leading researchers in applied probability to present current research advances in this important area. This volume will be of interest to graduate students and researchers whose research is closely connected to probability modelling and their applications. It is suitable for one semester graduate level research seminar in applied probability.




Recent Advances in Statistics and Probability


Book Description

No detailed description available for "Recent Advances in Statistics and Probability".




Advances in Probability and Mathematical Statistics


Book Description

This volume contains papers which were presented at the XV Latin American Congress of Probability and Mathematical Statistics (CLAPEM) in December 2019 in Mérida-Yucatán, México. They represent well the wide set of topics on probability and statistics that was covered at this congress, and their high quality and variety illustrates the rich academic program of the conference.




Advanced Statistics with Applications in R


Book Description

Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.




A Probability and Statistics Companion


Book Description

An accessible and engaging introduction to the study of probability and statistics Utilizing entertaining real-world examples, A Probability and Statistics Companion provides aunique, interesting, and accessible introduction to probability and statistics. This one-of-a-kind book delves into practical topics that are crucial in the analysis of sample surveys and experimentation. This handy book contains introductory explanations of the major topics in probability and statistics, including hypothesis testing and regression, while also delving into more advanced topics such as the analysis of sample surveys, analysis of experimental data, and statistical process control. The book recognizes that there are many sampling techniques that can actually improve on simple random sampling, and in addition, an introduction to the design of experiments is provided to reflect recent advances in conducting scientific experiments. This blend of coverage results in the development of a deeper understanding and solid foundation for the study of probability and statistics. Additional topical coverage includes: Probability and sample spaces Choosing the best candidate Acceptance sampling Conditional probability Random variables and discrete probability distributions Waiting time problems Continuous probability distributions Statistical inference Nonparametric methods Least squares and medians Recursions and probability Each chapter contains exercises and explorations for readers who wish to conduct independent projects or investigations. The discussion of most methods is complemented with applications to engaging, real-world scenarios such as winning speeds at the Indianapolis 500 and predicting winners of the World Series. In addition, the book enhances the visual nature of the subject with numerous multidimensional graphical representations of the presented examples. A Probability and Statistics Companion is an excellent book for introductory probability and statistics courses at the undergraduate level. It is also a valuable reference for professionals who use statistical concepts to make informed decisions in their day-to-day work.




Probability and Statistics


Book Description

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.




Advances on Theoretical and Methodological Aspects of Probability and Statistics


Book Description

At the International Indian Statistical Association Conference, held at McMaster University in Ontario, Canada, participants focused on advancements in theory and methodology of probability and statistics. This is one of two volumes containing invited papers from the meeting. The 32 chapters deal with different topics of interest, including stochastic processes and inference, distributions and characterizations, inference, Bayesian inference, selection methods, regression methods, and methods in health research. The text is ideal for applied mathematicians, statisticians, and researchers in the field.




Probability for Statistics and Machine Learning


Book Description

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.




Asymptotic Theory of Statistical Inference


Book Description

Probability and stochastic processes; Limit theorems for some statistics; Asymptotic theory of estimation; Linear parametric inference; Martingale approach to inference; Inference in nonlinear regression; Von mises functionals; Empirical characteristic function and its applications.




Recent Advances in Statistics


Book Description

Recent Advances in Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday is a collection of papers on statistics in honor of Herman Chernoff on the occasion of his 60th birthday. Topics covered range from sequential analysis (including designs) to optimization (including control theory), nonparametrics (including large sample theory), and statistical graphics. Comprised of 27 chapters, this book begins with a discussion on optimal stopping of Brownian motion, followed by an analysis of sequential design of comparative clinical trials. A two-sample sequential test for shift with one sample size fixed in advance is then presented. Subsequent chapters focus on set-valued parameters and set-valued statistics; large deviations of the maximum likelihood estimate in the Markov chain case; the limiting behavior of multiple roots of the likelihood equation; and optimal uniform rate of convergence for nonparametric estimators of a density function and its derivatives. The book concludes by considering significance and confidence levels, closed regions and models, and discrete distributions. This monograph should be of interest to students, researchers, and specialists in the fields of mathematics and statistics.