Recent Developments in Real and Harmonic Analysis


Book Description

A collection of invited chapters dedicated to Carlos Segovia, this unified and self-contained volume examines recent developments in real and harmonic analysis. The work begins with a chronological description of Segovia’s mathematical life, highlighting his original ideas and their evolution. Also included are surveys dealing with Carlos’ favorite topics, and PDE works written by students and colleagues close to Segovia whose careers were in some way influenced by him. Contributors: H. Aimar, A. Bonami, O. Blasco, L.A. Caffarelli, S. Chanillo, J. Feuto, L. Forzani, C.E. Gutíerrez, E. Harboure, A.L. Karakhanyan, C.E. Kenig, R.A. Macías, J.J. Manfredi, F.J. Martín-Reyes, P. Ortega, R. Scotto, A. de la Torre, J.L. Torrea.




New Trends in Applied Harmonic Analysis, Volume 2


Book Description

This contributed volume collects papers based on courses and talks given at the 2017 CIMPA school Harmonic Analysis, Geometric Measure Theory and Applications, which took place at the University of Buenos Aires in August 2017. These articles highlight recent breakthroughs in both harmonic analysis and geometric measure theory, particularly focusing on their impact on image and signal processing. The wide range of expertise present in these articles will help readers contextualize how these breakthroughs have been instrumental in resolving deep theoretical problems. Some topics covered include: Gabor frames Falconer distance problem Hausdorff dimension Sparse inequalities Fractional Brownian motion Fourier analysis in geometric measure theory This volume is ideal for applied and pure mathematicians interested in the areas of image and signal processing. Electrical engineers and statisticians studying these fields will also find this to be a valuable resource.




Operator Theory and Harmonic Analysis


Book Description

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.




Harmonic Analysis


Book Description

Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).




New Trends in Applied Harmonic Analysis


Book Description

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.




Recent Developments in Harmonic Analysis and its Applications


Book Description

This volume contains the proceedings of the virtual AMS Special Session on Harmonic Analysis, held from March 26–27, 2022. Harmonic analysis has gone through rapid developments in the past decade. New tools, including multilinear Kakeya inequalities, broad-narrow analysis, polynomial methods, decoupling inequalities, and refined Strichartz inequalities, are playing a crucial role in resolving problems that were previously considered out of reach. A large number of important works in connection with geometric measure theory, analytic number theory, partial differential equations, several complex variables, etc., have appeared in the last few years. This book collects some examples of this work.




Modern Methods in Operator Theory and Harmonic Analysis


Book Description

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.




Harmonic Analysis and Applications


Book Description

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.




Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science


Book Description

The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.




Harmonic Analysis of Spherical Functions on Real Reductive Groups


Book Description

Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.