Separation of Molecules, Macromolecules and Particles


Book Description

Providing chemical engineering undergraduate and graduate students with a basic understanding of how separation of a mixture of molecules, macromolecules or particles is achieved, this textbook is a comprehensive introduction to the engineering science of separation. • Students learn how to apply their knowledge to determine the separation achieved in a given device or process • Real-world examples are taken from biotechnology, chemical, food, petrochemical, pharmaceutical and pollution control industries • Worked examples, elementary separator designs and chapter-end problems are provided, giving students a practical understanding of separation. The textbook systematically develops different separation processes by considering the forces causing the separation and how this separation is influenced by the patterns of bulk flow in the separation device. Readers will be able to take this knowledge and apply it to their own future studies and research in separation and purification. Online resources include solutions to the exercises and guidance for computer simulations.










Separation of Molecules, Macromolecules and Particles


Book Description

A modern separation process textbook written for advanced undergraduate and graduate level courses in chemical engineering.







A Research Agenda for Transforming Separation Science


Book Description

Separation science plays a critical role in maintaining our standard of living and quality of life. Many industrial processes and general necessities such as chemicals, medicines, clean water, safe food, and energy sources rely on chemical separations. However, the process of chemical separations is often overlooked during product development and this has led to inefficiency, unnecessary waste, and lack of consensus among chemists and engineers. A reevaluation of system design, establishment of standards, and an increased focus on the advancement of separation science are imperative in supporting increased efficiency, continued U.S. manufacturing competitiveness, and public welfare. A Research Agenda for Transforming Separation Science explores developments in the industry since the 1987 National Academies report, Separation and Purification: Critical Needs and Opportunities. Many needs stated in the original report remain today, in addition to a variety of new challenges due to improved detection limits, advances in medicine, and a recent emphasis on sustainability and environmental stewardship. This report examines emerging chemical separation technologies, relevant developments in intersecting disciplines, and gaps in existing research, and provides recommendations for the application of improved separation science technologies and processes. This research serves as a foundation for transforming separation science, which could reduce global energy use, improve human and environmental health, and advance more efficient practices in various industries.




Partition of Cell Particles and Macromolecules


Book Description

Describes partition techniques for the separation and purification of cells, cell organelles, membrane vesicles, viruses, and biopolymers, such as proteins and nucleic acids. The basic theory of partition is discussed, as are the properties of aqueous, two-phase systems and the general behavior of particles and molecules. Updates include advances and new applications introduced since 1971.







Molecular Characterization of Polymers


Book Description

Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material Establishes a strong link between basic principles, characterization techniques, and real-life applications