Recent Trends in Operator Theory and Applications


Book Description

This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3–5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error correction; a survey of results on Toeplitz operators, and applications of Toeplitz operators to the study of reproducing kernel functions; results on the 2-local reflexivity problem of a set of operators; topics from the theory of preservers; and recent trends on the study of quotients of tensor product spaces and tensor operators. It also includes research articles that present overviews of state-of-the-art techniques from operator theory as well as applications to recent research trends and open questions. A goal of all articles is to introduce topics within operator theory to the general public.




Current Trends in Operator Theory and its Applications


Book Description

Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.




Recent Trends in Operator Theory and Partial Differential Equations


Book Description

This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.




Operator Theory and Harmonic Analysis


Book Description

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.




Modern Methods in Operator Theory and Harmonic Analysis


Book Description

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.




Recent Trends in Operator Theory and Applications


Book Description

This volume contains the proceedings of the workshop on Recent Trends in Operator Theory and Applications (RTOTA 2018), held from May 3-5, 2018, at the University of Memphis, Memphis, Tennessee. The articles introduce topics from operator theory to graduate students and early career researchers. Each such article provides insightful references, selection of results with articulation to modern research and recent advances in the area. Topics addressed in this volume include: generalized numerical ranges and their application to study perturbation of operators, and connections to quantum error c.




Current Trends in Mathematical Analysis and Its Interdisciplinary Applications


Book Description

This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.




Operator Theory and Harmonic Analysis


Book Description

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.




Periodic Differential Operators


Book Description

Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.




Operator Theory and Differential Equations


Book Description

This volume features selected papers from The Fifteenth International Conference on Order Analysis and Related Problems of Mathematical Modeling, which was held in Vladikavkaz, Russia, on 15 - 20th July 2019. Intended for mathematicians specializing in operator theory, functional spaces, differential equations or mathematical modeling, the book provides a state-of-the-art account of various fascinating areas of operator theory, ranging from various classes of operators (positive operators, convolution operators, backward shift operators, singular and fractional integral operators, partial differential operators) to important applications in differential equations, inverse problems, approximation theory, metric theory of surfaces, the Hubbard model, social stratification models, and viscid incompressible fluids.