Recombinant DNA Methodology II


Book Description

The critically acclaimed laboratory standard for forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerlyawaited, frequently consulted, and praised by researchers and reviewers alike. More than 250 volumes have been published (all of them still in print) and much of the material is relevant even today--truly an essential publication for researchers in all fields of life sciences. * Methods for: * DNA isolation and cloning* Synthesizing complementary DNA (cDNA)* Cleaving and manipulating DNA * Selecting useful reporter genes* Constructing vectors for cloning genes* Constructing expression vectors* Site-directed mutagenesis and gene disruption* Identifying and mapping genes* Transforming animal and plant cells* Sequencing DNA* Amplifying and manipulating DNA and PCR* Detecting DNA - protein interaction




Recombinant DNA Methodology


Book Description

Recombinant DNA methods are powerful, revolutionary techniques that allow the isolation of single genes in large amounts from a pool of thousands or millions of genes and the modification of these isolated genes or their regulatory regions for reintroduction into cells for expression at the RNA or protein levels. These attributes lead to the solution of complex biological problems and the production of new and better products in the areas of medicine, agriculture, and industry. Recombinant DNA Methodology, a volume in the Selected Methods in Enzymology series produced in benchtop format, contains a selection of key articles from Volumes 68, 100, 101, 153, 154, and 155 of Methods in Enzymology. The essential and widely used procedures provided at an affordable price will be an invaluable aid to the graduate student and the researcher. Enzymes in DNA research DNA isolation, hybridization, and cloning DNA sequence analysis cDNA cloning Gene products Identification of cloned genes and mapping of genes Monitoring cloned gene expression Cloning and transferring of genes into yeast cells Cloning and transferring of genes into plant cells Cloning and transferring of genes into animal cells Site-directed mutagenesis Protein engineering Expression vectors




Enzymology Primer for Recombinant DNA Technology


Book Description

Enzymes are indispensable tools in recombinant DNA technology and genetic engineering. This book not only provides information for enzymologists, but does so in a manner that will also aid nonenymologists in making proper use of these biocatalysts in their research. The Enzymology Primer for Recombinant DNA Technology includes information not usually found in the brief descriptions given in most books on recombinant DNA methodology and gene cloning. Provides essential basics as well as up-to-date information on enzymes most commonly used in recombinant DNA technology Presents information in an easily accessible format to serve as a quick reference source Leads to a better understanding of the role of biocatalysts in recombinant DNA techniques




Nuclear Magnetic Resonance of Biological Macromolecules, Part C


Book Description

The critically acclaimed laboratory standard, Methods in Enzymology, is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. The series contains much material still relevant today - truly an essential publication for researchers in all fields of life sciences. Nuclear Magnetic Resonance of Biological Macromolecules, Part C is written with a "hands-on" perspective. That is, practical applications with critical evaluations of methodologies and experimental considerations needed to design, execute, and interpret NMR experiments pertinent to biological molecules. * One of the most highly respected publications in the field of biochemistry since 1955 * Frequently consulted, and praised by researchers and reviewers alike * Truly an essential publication for anyone in any field of the life sciences




Recombinant DNA


Book Description

An overview of recombitant DNA techniques and surveys advances in recombinant molecular genetics, experimental methods and their results.




Recombinant DNA Laboratory Manual


Book Description

Recombinant DNA Laboratory Manual is a laboratory manual on the fundamentals of recombinant DNA techniques such as gel electrophoresis, in vivo mutagenesis, restriction mapping, and DNA sequencing. Procedures that are useful for studying either prokaryotes or eukaryotes are discussed, and experiments are included to teach the fundamentals of recombinant DNA technology. Hands-on computer sessions are also included to teach students how to enter and manipulate sequence information. Comprised of nine chapters, this book begins with an introduction to bacterial growth parameters, how to measure bacterial cell growth, and how to plot cell growth data. The discussion then turns to the isolation and analysis of chromosomal DNA in bacteria and Drosophila; plasmid DNA isolation and agarose gel analysis; and introduction of DNA into cells. Subsequent chapters deal with Tn5 mutagenesis of pBR329; DNA cloning in M13; DNA sequencing; and DNA gel blotting, probe preparation, hybridization, and hybrid detection. The book concludes with an analysis of lambda phage manipulations. This manual is intended for advanced undergraduate or beginning graduate students and should also be helpful to established investigators who are changing their research focus.




Manipulation and Expression of Recombinant DNA


Book Description

This manual is an indispensable tool for introducing advanced undergraduates and beginning graduate students to the techniques of recombinant DNA technology, or gene cloning and expression. The techniques used in basic research and biotechnology laboratories are covered in detail. Students gain hands-on experience from start to finish in subcloning a gene into an expression vector, through purification of the recombinant protein.The second edition has been completely re-written, with new laboratory exercises and all new illustrations and text, designed for a typical 15-week semester, rather than a 4-week intensive course. The “project approach to experiments was maintained: students still follow a cloning project through to completion, culminating in the purification of recombinant protein. It takes advantage of the enhanced green fluorescent protein—students can actually visualize positive clones following IPTG induction. *Cover basic concepts and techniques used in molecular biology research labs*Student-tested labs proven successful in a real classroom laboratories*Exercises simulate a cloning project that would be performed in a real research lab*"Project" approach to experiments gives students an overview of the entire process*Prep-list appendix contains necessary recipes and catalog numbers, providing staff with detailed instructions




Recombinant DNA Technology


Book Description

Genetic engineering is a rapidly growing field in the area of biological sciences. The driving forces behind this are the challenges encountered by health sectors, agriculture, the environment, and industry. As such, accurate and comprehensive knowledge about the philosophy, principles and application of genetic engineering is indispensable for students and researchers to harness maximum opportunities from this field of science. This volume gathers together comprehensive information regarding genetic engineering from recent studies, and presents it in a coherent manner. As such, it will be of interest to undergraduate and postgraduate students and researchers working in the biological sciences.




Calculations for Molecular Biology and Biotechnology


Book Description

Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: Updated and increased coverage of real time PCR and the mathematics used to measure gene expression More sample problems in every chapter for readers to practice concepts




Molecular Biotechnology


Book Description

The second edition explains the principles of recombinant DNA technology as well as other important techniques such as DNA sequencing, the polymerase chain reaction, and the production of monclonal antibodies.