Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles


Book Description

This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly.Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester. The emissions calculations for plug-in hybrid-electric vehicle (PHEV) operation are provided as inventory results, weighted in the same manner as fuel and electrical energy consumption. Decisions for on-board versus off-board emissions, relative benefits of emissions-free driving, and how best to weight a "cold-start" cycle in charge-depleting (CD) mode must first be made before a certification methodology can be determined. Thus, calculations or test methodology intended to certify a PHEV for compliance of emissions standards is beyond the scope of this document.For purposes of this test procedure, an HEV is defined as a road vehicle that can draw propulsion energy from both of the following sources of stored energy: (1) a consumable fuel and (2) a rechargeable energy storage system (RESS) that is recharged by the on-board hybrid propulsion system, an external electric energy source, or both. Consumable fuels that are covered by this document are limited to petroleum-based liquid fuels (e.g., gasoline and Diesel fuel), alcohol-based liquid fuels (e.g., methanol and ethanol), and hydrocarbon-based gaseous fuels (e.g., compressed natural gas). The RESSs that are covered by this document include batteries, capacitors, and electromechanical flywheels. Procedures are included to test CD operating modes of HEVs designed to be routinely charged off-board, and calculations are provided that combine the CD and charge-sustaining (CS) behavior according to in-use driving statistics.The HEVs shall have an RESS with a nominal energy >2% of the fuel consumption energy of a particular test cycle to qualify to be tested with the procedures contained in this document.Single-roll, electric dynamometer test procedures are specified to minimize the test-to-test variations inherent in track testing and to conform to standard industry practice for exhaust emissions and fuel economy measurements.This document does not include test procedures for recharge-dependent (RD) operating modes or vehicles (see 3.1.2 for the definition).This document does not address the methods or equations necessary to calculate the adjusted U.S. Environmental Protection Agency (EPA) label miles per gallon (MPG) (sometimes referred to "EPA 5-Cycle" calculations). Hybrid-electric vehicle (HEV) technology has progressed significantly since the original publication of SAE standard J1711. The HEV has been in production for over a decade and parts of the original procedure have successfully addressed charge-sustaining HEVs. However, at the time of this revision, plug-in hybrid technology has experienced rapid development. As such, the procedures to address this technology needed to be revisited and modified to accommodate the operational possibilities demonstrated by the diverse set of working prototypes and simulated vehicles in the literature. Also, the list of standard test procedures addressed in SAE J1711 has been expanded to cover all five major test cycle procedures (UDDS, HFEDS, US06, SC03, and Cold FTP) now being used to evaluate vehicle fuel economy.










Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles


Book Description

This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly.Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, Ndx, CO2); instead, that decision will depend on the objectives of the tester. The emissions calculations for plug-in hybrid-electric vehicle (PHEV) operation are provided as inventory results, weighted in the same manner as fuel and electrical energy consumption. Decisions for on-board versus off-board emissions, relative benefits of emissions-free driving, and how best to weight a "cold-start" cycle in charge-depleting (CD) mode must first be made before a certification methodology can be determined. Thus, calculations or test methodology intended to certify a PHEV for compliance of emissions standards is beyond the scope of this document.For purposes of this test procedure, an HEV is defined as a road vehicle that can draw propulsion energy from both of the following sources of stored energy: (1) a consumable fuel and (2) a rechargeable energy storage system (RESS) that is recharged by the on-board hybrid propulsion system, an external electric energy source, or both. Consumable fuels that are covered by this document are limited to petroleum-based liquid fuels (e.g., gasoline and Diesel fuel), alcohol-based liquid fuels (e.g., methanol and ethanol), and hydrocarbon-based gaseous fuels (e.g., compressed natural gas). The RESSs that are covered by this document include batteries, capacitors, and electromechanical flywheels. Procedures are included to test CD operating modes of HEVs designed to be routinely charged off-board, and calculations are provided that combine the CD and charge-sustaining (CS) behavior according to in-use driving statistics.The HEVs shall have an RESS with a nominal energy >2% of the fuel consumption energy of a particular test cycle to qualify to be tested with the procedures contained in this document.Single-roll, electric dynamometer test procedures are specified to minimize the test-to-test variations inherent in track testing and to conform to standard industry practice for exhaust emissions and fuel economy measurements.This document does not include test procedures for recharge-dependent (RD) operating modes or vehicles (see 3.1.2 for the definition).This document does not address the methods or equations necessary to calculate the adjusted U.S. Environmental Protection Agency (EPA) label miles per gallon (MPG) (sometimes referred to "EPA 5-Cycle" calculations).










Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles


Book Description

This SAE Recommended Practice was established to provide an accurate, uniform and reproducible procedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester. While the recommended practice was developed specifically to address the issue of measuring fuel economy and emissions for hybrid-electric heavy-duty vehicles on a chassis dynamometer, the document can also be applied to chassis testing of other heavy-duty vehicles.This document builds upon SAE J1711, the light-duty HEV chassis recommended practice. As in SAE J1711, this document defines a hybrid vehicle as having both a rechargeable energy storage system (RESS) capable of releasing and capturing energy and an energy-generating device that converts consumable fuels into propulsion energy. RESS specifically included in the recommended practice are batteries, capacitors and flywheels, although other RESS can be evaluated utilizing the guidelines provided in the document. Further, the recommended practice provides a detailed description of state of charge (SOC) correction for charge-sustaining HEVs. This document also has a section which provides recommendations for calculating fuel economy and emissions for charge-depleting hybrid-electric vehicles. It should be noted that most heavy-duty vehicles addressed in this document would be powered by engines that are certified separately for emissions. The engine certification procedure appears in the Code of Federal Regulations, Title 40.NOTE This document does not make specific provisions or recommendations for testing of bus and truck emissions with air conditioning deployed because the complexity of such tests is significant and is beyond the scope of the original document. It is recognized that a future practice that addresses air conditioning and other potentially large auxiliary loads is needed.










Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.