Dynamic Inversion-based Adaptive/reconfigurable Control of the X-33 on Ascent


Book Description

A quaternion-based attitude control system is developed for the X-33 in the ascent flight phase. A nonlinear control law commands body-axis rotation rates that align the angular velocity vector with an Euler axis defining the axis of rotation that will rotate the body-axis system into a desired-axis system. The magnitudes of the commanded body rates are determined by the magnitude of the rotation error. The commanded body rates form the input to a dynamic inversion-based adaptive/reconfigurable control law. The indirect adaptive control portion of the control law uses online system identification to estimate the current control effectiveness matrix to update a control allocation module. The control allocation nominally operates in a minimum deflection mode; however, if a fault is detected, it can operate in a null-space injection mode that excites and decorrelates the effectors without degrading the vehicle response to enable online system identification. The overall 5 stem is designed to provide fault and damage tolerance for the X-33 on ascent.




Design of Digital Systems and Devices


Book Description

Logic design of digital devices is a very important part of the Computer Science. It deals with design and testing of logic circuits for both data-path and control unit of a digital system. Design methods depend strongly on logic elements using for implementation of logic circuits. Different programmable logic devices are wide used for implementation of logic circuits. Nowadays, we witness the rapid growth of new and new chips, but there is a strong lack of new design methods. This book includes a variety of design and test methods targeted on different digital devices. It covers methods of digital system design, the development of theoretical base for construction and designing of the PLD–based devices, application of UML for digital design. A considerable part of the book is devoted to design methods oriented on implementing control units using FPGA and CPLD chips. Such important issues as design of reliable FSMs, automatic design of concurrent logic controllers, the models and methods for creating infrastructure IP services for the SoCs are also presented. The editors of the book hope that it will be interesting and useful for experts in Computer Science and Electronics, as well as for students, who are viewed as designers of future digital devices and systems.







Aircraft Control Allocation


Book Description

Aircraft Control Allocation Wayne Durham, Virginia Polytechnic Institute and State University, USA Kenneth A. Bordignon, Embry-Riddle Aeronautical University, USA Roger Beck, Dynamic Concepts, Inc., USA An authoritative work on aircraft control allocation by its pioneers Aircraft Control Allocation addresses the problem of allocating supposed redundant flight controls. It provides introductory material on flight dynamics and control to provide the context, and then describes in detail the geometry of the problem. The book includes a large section on solution methods, including 'Banks' method', a previously unpublished procedure. Generalized inverses are also discussed at length. There is an introductory section on linear programming solutions, as well as an extensive and comprehensive appendix dedicated to linear programming formulations and solutions. Discrete-time, or frame-wise allocation, is presented, including rate-limiting, nonlinear data, and preferred solutions. Key features: Written by pioneers in the field of control allocation. Comprehensive explanation and discussion of the major control allocation solution methods. Extensive treatment of linear programming solutions to control allocation. A companion web site contains the code of a MATLAB/Simulink flight simulation with modules that incorporate all of the major solution methods. Includes examples based on actual aircraft. The book is a vital reference for researchers and practitioners working in aircraft control, as well as graduate students in aerospace engineering.




Advances in Gain-Scheduling and Fault Tolerant Control Techniques


Book Description

This thesis reports on novel methods for gain-scheduling and fault tolerant control (FTC). It begins by analyzing the connection between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms. This is then followed by a detailed description of the design of robust and shifting state-feedback controllers for these systems. Furthermore, it presents two approaches to fault-tolerant control: the first is based on a robust polytopic controller design, while the second involves a reconfiguration of the reference model and the addition of virtual actuators into the loop. Inaddition the thesis offers a thorough review of the state-of-the art in gain scheduling and fault-tolerant control, with a special emphasis on LPV and TS systems.










Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles


Book Description

Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as flight performance, self protection and extended-life structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of electrical flight control system failures: oscillatory failure, runaway, and jamming. Advanced fault detection and diagnosis for linear and linear-parameter-varying systems are described. Lastly recovery strategies appropriate to remaining actuator/sensor/communications resources are developed. The authors exploit experience gained in research collaboration with academic and major industrial partners to validate advanced fault diagnosis and fault-tolerant control techniques with realistic benchmarks or real-world aeronautical and space systems. Consequently, the results presented in Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace, will be of interest in both academic and aerospatial-industrial milieux.




Aerospace Vehicle Dynamics and Control


Book Description

Rapid developments of computer technology have affected the analysis, synthesis, and control of every aspect of aerospace vehicle dynamics. The rewards of increased research have had far reaching implications in terms of performance, safety, and operational cost effectiveness. New challengeshave emerged in the wake of the recent shift in emphasis from military to civil applications. This collection of papers covers a wide range of topics including mathematical modelling, compuational methods, computer simulation, and developments in control systems.To sum up, this is an interesting and topical selection of papers on recent research in an area of growing interest and application.