Controlling Cost Growth of NASA Earth and Space Science Missions


Book Description

Cost and schedule growth is a problem experienced by many types of projects in many fields of endeavor. Based on prior studies of cost growth in NASA and Department of Defense projects, this book identifies specific causes of cost growth associated with NASA Earth and space science missions and provides guidance on how NASA can overcome these specific problems. The recommendations in this book focus on changes in NASA policies that would directly reduce or eliminate the cost growth of Earth and space science missions. Large cost growth is a concern for Earth and space science missions, and it can be a concern for other missions as well. If the cost growth is large enough, it can create liquidity problems for NASA's Science Mission Directorate that in turn cause cost profile changes and development delays that amplify the overall cost growth for other concurrent and/or pending missions. Addressing cost growth through the allocation of artificially high reserves is an inefficient use of resources because it unnecessarily diminishes the portfolio of planned flights. The most efficient use of resources is to establish realistic budgets and reserves and effective management processes that maximize the likelihood that mission costs will not exceed reserves. NASA is already taking action to reduce cost growth; additional steps, as recommended herein, will help improve NASA's mission planning process and achieve the goal of ensuring frequent mission opportunities for NASA Earth and space science.




Reducing Space Mission Cost


Book Description

This book is a follow-on to the now standard text and reference, Space Mission Analysis and Design, also edited by Drs. Wertz and Larson. It is required reading for professionals, students, and managers in astronautics or space sicences and managers or scientists involved in space experiments. This book shows that reducing space mission cost, without reducing reliability, is as possible as it is important for the future of space exploration.




Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions


Book Description

Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions addresses fundamental issues of mission architecture in the nation's scientific space program and responds to the FY99 Senate conference report, which requested that NASA commission a study to assess the strengths and weaknesses of small, medium, and large missions. This report evaluates the general strengths and weaknesses of small, medium, and large missions in terms of their potential scientific productivity, responsiveness to evolving opportunities, ability to take advantage of technological progress, and other factors that may be identified during the study; identifies which elements of the SSB and NASA science strategies will require medium or large missions to accomplish high-priority science objectives; and recommends general principles or criteria for evaluating the mix of mission sizes in Earth and space science programs. Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions considers not only scientific, technological, and cost trade-offs, but also institutional and structural issues pertaining to the vigor of the research community, government-industry university partnerships, graduate student training, and the like.







Reducing the Cost of Spacecraft Ground Systems and Operations


Book Description

Reducing the cost of space program interests people more and more nowadays due to the concerns of budget limitation and commercialization of space technology. The Proceedings of the 3rd International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations bring together papers contributed by the authors representing the research organizations, academic institutions and commercial sectors of 10 countries around the world. The papers encompass the subject areas in mission planning and operation, TT&C systems, mission control centers, and mini and small satellite support, highlighting the issues concerned by the researchers and engineers involved in a wide range of space programs and space industries.




Space Science


Book Description




Space Exploration


Book Description




An Enabling Foundation for NASA's Earth and Space Science Missions


Book Description

NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.




Recapturing a Future for Space Exploration


Book Description

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.