Reef Fish Spawning Aggregations: Biology, Research and Management


Book Description

Reef fish spawning aggregations, ranging from small groups to many tens of thousands of individuals, are spectacular but poorly known natural phenomena whereby fish assemble at specific times and locations to spawn. For some species these large groups may be the only form of reproduction, the high fish numbers briefly giving a false impression of stability and abundance—an ‘illusion of plenty’. They are often a focus for intensive seasonal fishing because of their predictability and because many important commercial fishes form them. Highly vulnerable to overexploitation, many aggregations and their associated fisheries, have disappeared or are in decline. Few are effectively managed or incorporated into protected areas. Aggregations are not well understood by fishery scientists, managers and conservationists and their significance little appreciated by fishers or the wider public. To ensure their persistence to replenish important fisheries in coral ecosystems, maintain their ecosystem function and continue to delight divers, a significant change in perspective is needed to foster protection and management. This book provides comprehensive and practical coverage of the biology, study and management of reef fish aggregations, exploring their how, when, where, and why. It explores ways to better protect, study, manage and conserve them, while identifying key data gaps and questions. The text is extensively illustrated with many unique, never before published, photographs and graphics. Case studies on over 20 interesting and important fishes are included, outlining their biology and fisheries and highlighting major concerns and challenges.




Reef Fish Spawning Aggregation Sites


Book Description

Fish spawning aggregation (FSA) sites are areas where repeated concentration of conspecific fish gathers for the purpose of spawning. Despite of their importance in the reproduction of many coral reef fishes, few FSA sites are actively managed. The aim of this study, conducted in the Seychelles, was to improve general understanding on the ecology of FSA sites to facilitate their management. It focuses on both the individuals that aggregate at FSA sites to spawn and those that are resident at FSA sites. Acoustic telemetry and underwater visual census were used to study three species that form spawning aggregations (spinefoot shoemaker (Siganus sutor), Camouflage grouper (Epinephelus polyphekadion) and Brown-marbled grouper (E. fuscoguttatus)) and the resident fish assemblages at FSA sites. Acoustic detections found individual S. sutor to have high fidelity to individual FSA sites and to show significant periodicity with the full moon period in the timing of their arrival and departure from FSA sites. Conversely, spawning aggregations of E. fuscoguttatus and E. polyphekadion overlapped spatially and temporally, with strong periodicity for spawning aggregation to form with the new moon period. The formation of E. fuscoguttatus and E. polyphekadion FSAs caused complex changes in the fish assemblage that is resident at the FSA site. The effect of lunar phase on the resident fish assemblages at S. sutor FSA sites appeared to be scale-dependent, having greater impact at the larger than the smaller FSA site. Information on the spatial and temporal dynamics of aggregating and resident fish species is used to propose management actions to improve the protection of FSA sites.




Regional Analysis of Seafloor Characteristics at Reef Fish Spawning Aggregation Sites in the Caribbean


Book Description

Overfishing of stock and decreasing biodiversity are grave concerns for the U.S. and the rest of the world. In the Caribbean, one of the critical science gaps hindering effective management is the lack of information on how environmental factors may make fish spawning aggregation (FSA) sites optimal for spawning. Understanding and applying spatial information of marine species' reproductive ecology and critical life habitat such as the patterns of seafloor characteristics of FSA sites is vital to efficiently design marine protected areas (MPAs) to help rebuild regional fish stocks. The specific goals of the study were: (1) to map the seafloor at historically known grouper and snapper spawning aggregation sites in three different countries, and (2) to characterize quantitatively the geomorphology of the sites including horizontal and vertical curvature profiles of the reefs, bottom depth at spawning sites, distance between spawning sites and shelf-edges/reef promontory tips, and the shortest distance between the spawning sites and 100 m water depth. These data were field-collected with a global positioning system (GPS) and eco-sounder that provided latitude/longitude and depth. The point data were interpolated to surfaces in GIS to determine slope, curvature, and distance from spawning sites and three-dimensional reef structures. This study revealed that all 12 known Nassau grouper spawning aggregation sites in Belize and 5 known sites in the Cayman Islands were located at convex-shaped seaward extending reefs (reef promontories) jutting into deep water, within 1 km of reef promontory tips. However, spawning aggregations did not always occur at the tips of reef promontories, though all were found along the shelf edges within 1 km of promontory tips. Sixteen sites were multi-species spawning sites. These general characteristics were used to predict an undiscovered multi-species spawning aggregation in Belize. A successful prediction in Belize, together with the compiled data from multiple sites indicate: 1) reef promontories are vital locations for transient reef fish spawning aggregations, 2) three-dimensional information and analysis are necessary to locate grouper and snapper FSA sites, and 3) this study provides a potential tool for not only design for MPAs but also prediction of unknown spawning sites in the Caribbean.







Reef Fish Spawning Aggregations: Biology, Research and Management


Book Description

Reef fish spawning aggregations, ranging from small groups to many tens of thousands of individuals, are spectacular but poorly known natural phenomena whereby fish assemble at specific times and locations to spawn. For some species these large groups may be the only form of reproduction, the high fish numbers briefly giving a false impression of stability and abundance—an ‘illusion of plenty’. They are often a focus for intensive seasonal fishing because of their predictability and because many important commercial fishes form them. Highly vulnerable to overexploitation, many aggregations and their associated fisheries, have disappeared or are in decline. Few are effectively managed or incorporated into protected areas. Aggregations are not well understood by fishery scientists, managers and conservationists and their significance little appreciated by fishers or the wider public. To ensure their persistence to replenish important fisheries in coral ecosystems, maintain their ecosystem function and continue to delight divers, a significant change in perspective is needed to foster protection and management. This book provides comprehensive and practical coverage of the biology, study and management of reef fish aggregations, exploring their how, when, where, and why. It explores ways to better protect, study, manage and conserve them, while identifying key data gaps and questions. The text is extensively illustrated with many unique, never before published, photographs and graphics. Case studies on over 20 interesting and important fishes are included, outlining their biology and fisheries and highlighting major concerns and challenges.




Behavioral Ecology of Coral Reef Fishes at Spawning Aggregation Sites


Book Description

Coral reef fishes aggregate to spawn on certain locations of reefs. This thesis is an extensive investigation of the behavioral and ecological relations between spawning reef fishes, predators and their environment at a spawning aggregation site. Many hypotheses have been proposed regarding the adaptive nature of different diel reproductive cycles observed in coral reef fishes. This study quantified the spawning patterns of eleven different reef fish species at one location (Johnston Atoll, Central Pacific), while making simultaneous measurements of the environmental factors likely to affect the spawning behavior of reef fishes. The environmental variables measured included time of day, tides, current velocity, current speed and abundance of piscivorous predators, and were correlated with observed spawning outputs through multifactorial analyses. High interspecific variability in spawning patterns was found among the eleven monitored species. The majority of species spawned at a specific time of the day, in agreement with the timing of spawning described at other locations, indicative of a fixed general response by fishes across distribution areas. Spawning of most fishes with daytime spawning peaks was correlated with local changes in current direction and predatory risks, showing responses designed to reduce the mortality of propagules and adults. Dusk-spawning species generally did not respond to changes in flow direction and predator abundance, most likely due to their short spawning periods and the reduced predatory pressures that occurred at dusk. Tides did not seem to be used exclusively as synchronizing cues to adult fishes for spawning. The influence of current speed in determining diel timing of spawning varied among species, with some species showing responses to current speed while others showed no response. Predation is a selective force hypothesized to influence the spawning behavior of coral reef fishes. This study describes and quantifies the predatory activities of two piscivorous and three planktivorous species at a coral reef fish spawning aggregation site in Johnston Atoll (Central Pacific). To characterize predator-prey relations, the spawning behavior of prey species was quantified simultaneously with measurements of predatory activity, current speed and substrate topography. Diel activity patterns and predator-prey relations varied among the predatory species analyzed. The activity patterns of piscivores, measured both as abundance and attack rates, were high during the daytime, decreased during the late afternoon hours and reached a minimum at dusk. The abundance of piscivores was significantly correlated with the abundance of prey for only one (Caranx melampygus) of the two piscivorous species, while the other species (Aphareus furca) did not respond to prey abundance. The selection of certain prey species by piscivores was consistent with two different hypotheses: the satiation of predators and the differences in spawning behaviors among prey species. Two of the three planktivorous species fed most actively at dusk, and selected as prey those species of reef fishes that produced eggs of large size. The third planktivorous species fed at all times of the day. Spawning prey fishes were more abundant over substrates with complex topography where refuges from piscivores were abundant than over smooth substrates. Overall attack rates by piscivores on adult spawning fishes were higher than by planktivores feeding on recently released eggs. The diel spawning patterns displayed by reef fishes at the study site seem to be influenced by the diel activity and prey selection patterns of piscivores previously described. The highest diversity of prey species occurred at dusk, when piscivores were least abundant and overall abundance of prey fishes was lowest. The behavioral strategies used by the piscivore Caranx melampygus (Carangidae) while feeding on spawning aggregations of coral reef fishes were studied for two years at Johnston Atoll (Central Pacific). Visual behavioral observations revealed the existence of two different hunting behaviors employed by this predator. A 'midwater' hunting behavior, which consisted of midwater high speed attacks on spawning fishes, is typical of large sized transient predators and yielded a low capture success rate (2%). An 'ambush' hunting behavior consisted of attacks on spawning fishes from hiding locations in the substrate, and yielded a much higher capture success rate (17%). While ambushing their prey, C. melampygus displayed territorial aggressive behaviors toward other intruding conspecifics, defending a specific section of the reef. This specialized ambushing behavior is atypical of fast swimming carangids, but illustrates the behavioral flexibility of this predator. I suggest that the use of these two hunting behaviors by C. melampygus can potentially cause density-dependent mortality rates in prey communities, a demographic consequence previously attributed to the simultaneous action of various guilds of predatory species. Two species of trunkfishes (Ostraciidae) were observed spawning above a coral reef at Johnston Atoll (Central Pacific). This study analyzed the potential causes determining the difference in spawning ascent height in Ostracion meleagris (3.3 m average) and 0. whitleyi (1.5 m average). One hypothesis proposes that the risk of predation by piscivores influences how far each species can swim from the substrate, and that predation risk is greater for 0. whitleyi than 0. meleagris. Trunkfishes have an armoured exoskeleton and secrete an ichthyotoxic mucous under stress conditions, two defenses against predation. Because the two species used the same spawning grounds and spawned at approximately the same time, their size and toxicity levels were analyzed to assess their susceptibility to predation. Toxins were extracted from wild fishes and tested using a mosquitofish assay. Ostracion whitleyi was more toxic than 0. meleagris, refuting the predation-risk hypothesis. A second hypothesis proposes that long ascents are a way for spawning pairs to avoid disturbances by other male conspecifics. Observations of the spawning behaviours of the two species showed that male 0. meleagris were frequently involved in fighting episodes and showed high rates of male streaking (intruding nonpaired males attempting to fertilize eggs from spawning paired females), while none of these behaviours were observed in 0. whitleyi. The larger spawning height from the substrate may be an attempt by pairs of 0. meleagris to reduce the possibility of interference by other male conspecifics. Thus, the height of spawning ascents corresponds to the expectation from the male disturbance hypothesis, but not to the expectation of the predatory risk hypothesis.










Tropical Snappers And Groupers


Book Description